• Title/Summary/Keyword: Low-Voltage

Search Result 6,405, Processing Time 0.035 seconds

Bi-directional Dual Active Bridge Converter applying variable switching frequency for low battery charger (스위칭 주파수 가변 방식을 적용한 저전압 배터리 충전용 Dual Active Bridge 컨버터)

  • Jeong, Dong-Keun;Kim, Ho-Sung;Ryu, Myung-Hyo;Baek, Ju-Won;Kim, Hee-Je
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.413-414
    • /
    • 2014
  • This paper proposed an optimized design of a dual active bridge converter for a low-voltage charger. The dual active bridge converter among various bi-directional DC/DC converters is a high-efficiency isolated bi-directional converter. In the general design, when the battery voltage is high, the ZVS region is reduced. In contrast, when the battery voltage is low, the efficiency is low due to high conduction loss. In order to increase the ZVS region and the power conversion efficiency, depending on the battery voltage, variable switching frequency method is applied. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency method. The proposed method was applied to a 5kW prototype converter, and the experimental results were analyzed and verified.

  • PDF

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

PLL Control Strategy for ZVRT(Zero Voltage Ride Through) of a Grid-connected Single-phase Inverter (계통연계형 단상 인버터의 ZVRT(Zero Voltage Ride Through)를 위한 PLL 제어 전략)

  • Lee, Tae-Il;Lee, Kyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Grid codes for grid-connected inverters are essential considerations for bulk grid systems. In particular, a low-voltage ride-through (LVRT) function, which can contribute to the grid system's stabilization with the occurrence of voltage sag, is required by such inverters. However, when the grid voltage is under zero-voltage condition due to a grid accident, a zero-voltage ride-through (ZVRT) function is required. Grid-connected inverters typically have phase-locked loop (PLL) control to synchronize the phase of the grid voltage with that of the inverter output. In this study, the LVRT regulations of Germany, the United States, and Japan are analyzed. Then, three major PLL methods of grid-connected single-phase inverters, namely, notch filter-PLL, dq-PLL using an active power filter, and second-order generalized integrator-PLL, are reviewed. The proposed PLL method, which controls inverter output under ZVRT condition, is suggested. The proposed PLL operates better than the three major PLL methods under ZVRT condition in the simulation and experimental tests.

Maximum Efficiency Operation of Three-Level T-type Inverter for Low-Voltage and Low-Power Home Appliances

  • Shin, Seung-Min;Ahn, Jung-Hoon;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.586-594
    • /
    • 2015
  • This paper proposes a maximum efficiency operation strategy for three-level T-type inverter in entire operation areas. The three-level T-type inverter has higher and lower efficiency areas compared with two-level inverter. The proposed strategy aims to operate in the maximum efficiency point for the low-voltage and low-power home appliances. The three-level T-type inverter is analyzed in detail, and the two operation mode selection strategy is developed. The proposed algorithm is verified by theoretical analysis and experimental results.

Effect of Electric Fields on Reattachment of Lifted Flame at Low AC Frequency (저주파 교류 전기장 내에서의 부상화염의 재부착 특성에 관한 연구)

  • Kim, Y. K.;Ryu, S. K.;Won, S. H.;Chung, S. H.
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.197-201
    • /
    • 2007
  • The reattachment characteristics of propane lifted flames in laminar coflow jets influenced by AC electric fields have been investigated experimentally in low AC frequency range. The reattachment velocity and height have been measured by varying the applied AC voltage and frequency. The results showed that the reattachment of lifted flame occurred at relatively higher jet velocity with AC electric fields, comparing to that without having AC electric fields. The effect of AC electric fields became more effective at higher voltage and lower frequency in the AC frequency range larger than 30 Hz. However, in the low frequency range below 30 Hz, the reattachment velocity decreased with decreasing frequency. Consequently, there existed a transition regime, for the frequency smaller than about 30 Hz. Also, when the AC voltage was applied to the fuel nozzle at very low frequency, the reattachment process exhibited an oscillatory behavior, synchronized with the applied AC frequency.

  • PDF

Design of a Analog Multiplier for low-voltage low-power (저전압 저전력 아날로그 멀티플라이어 설계)

  • Lee, Goun-Ho;Seul, Nam-O
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3058-3060
    • /
    • 2005
  • In this paper, the CMOS four-quadrant analog multipliers for low-voltage low-power applications are presented. The circuit approach is based on the characteristic of the LV (Low-Voltage) composite transistor which is one of the useful analog building blocks. SPICE simulations are carried out to examine the performances of the designed multipliers. Simulation results are obtained by $0.25{\mu}m$ CMOS parameters with 2V power supply. The LV composite transistor can easily be extended to perform a four-quadrant multiplication. The multiplier has a linear input range up to ${\pm}0.5V$ with a linearity error of less than 1%. The measured -3dB bandwidth is 290MHz and the power dissipation is $37{\mu}W$. The proposed multiplier is expected to be suitable for analog signal processing applications such as portable communication equipment, radio receivers, and hand-held movie cameras.

  • PDF

A new low-cost energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 저가형 에너지 회수 회로)

  • Kim Tae-Sung;Choi Seong-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.68-70
    • /
    • 2006
  • A new low-cost energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. It has two auxiliary switches clamped on a half sustain voltage, and inductor currents are built up before the PDP is charged and -discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

  • PDF

Evaluation on Insulation Performance of Low-voltage Induction Motors by Partial Discharge Measurement (부분방전 측정에 의한 저압용 유도전동기의 절연성능 평가)

  • Park, Dae-Won;Choi, Su-Yeon;Choi, Jae-Sung;Kil, Gyung-Suk;Lee, Kang-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1887-1891
    • /
    • 2008
  • In this paper, we dealt with a partial discharge (PD) measurement method that has been accepted as an effective and non-destructive technique to estimate insulation performance of low-voltage induction motors. The PD measurement system consists of a coupling network, a low noise amplifier, and associated electronics. A shielded box was used to reduce environmental noise. Frequency characteristic of the coupling network was estimated by a sinusoidal signal input, and the low cut-off frequency of the coupling network was 1 MHz (-3 dB). Also, we carried out a calibration test for the PD measurement system. Sensitivity of the system was of 84 m$V_{max}$/pC between stator winding and enclosure. In application test on a low-voltage three phase induction motor (5 HP), we could detect 88 pC at AC 800 $V_{max}$.

  • PDF

Development of Converter for High Frequency Welding Machines using Active Snubber (액티브 스너버를 이용한 고주파 용접기 컨버터 개발)

  • Shin, Jun-Young;Lee, Jae-Min;Choi, Seung-Won;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.351-355
    • /
    • 2016
  • Welding machines are high-capacity systems used in a low-frequency range using IGBT. As their system is similar to a large transformer, most welding machines suffer a great loss because of hard switching and vast leakage inductance. A voltage-balancing circuit is designed to overcome these shortcomings. This circuit can reduce the transformer size by making it into a high frequency and reducing the input voltage by half and by adopting a serial structure that connects two full-bridges in a series to use a MOSFET with a good property at high frequency. In addition, a Schottky diode is used in the primary rectifier to overcome the low efficiency of most welding machines. To use the Schottky diode with a reliably relatively low withstanding voltage, an active snubber is adopted to effectively limit the ringing voltage of the diode cut-off voltage.