PDP을 위한 새로운 저가형 에너지 회수 회로

김태성, 최성욱, 문건우, 윤명중 한국과학기술원

A new low-cost energy-recovery circuit for a plasma display panel

Tae-Sung Kim, Seong-Wook Choi, Gun-Woo Moon, and Myung-Joong Youn KAIST

ABSTRACT

A new low-cost energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. It has two auxiliary switches clamped on a half sustain voltage, and inductor currents are built up before the PDP is charged and discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

1. Introduction

Since the PDP has advantages such as a wide view angle, lightness, thinness, high contrast, and large screen, it is one of the most leading candidates for large screen TVs. Generally, the PDP can be equivalently regarded as a capacitance load C_p . Therefore, when a sustain voltage V_s is alternatively applied across the PDP using full bridge inverter, there are the considerable energy loss of $2C_pV_s^2$ per each cycle, excessive surge current, and severe EMI noise.

To solve these problems, several approaches have been proposed. Among them, Weber's circuit shown in Fig. 1(a) features a low conduction loss and high performance [1]. However. it has disadvantages. There is a severe voltage drop across a parasitic resistance, which results in the serious hard switching, excessive surge current, serious power dissipation. severe **EMI** noise, and poor energy-recovery capability. Also, а gas-discharge current causes a serious voltage notch across the PDP. Above all, it uses four auxiliary switches having voltage stress of V_s/2, which results

Sakai's circuit shown in Fig. 1(b) features a simple

structure and good energy-recovery performance [2]. However, it still has disadvantage that voltage drop due to a parasitic resistance causes the serious hard switching, severe voltage notch, excessive surge current, serious power dissipation, severe EMI noise, and poor energy-recovery capability. Moreover, voltage stress of two auxiliary switches in ERC is V_s, which results in high cost.

Fig. 1 Prior circuits

To overcome these drawbacks of prior circuits, A new low-cost ERC for the PDP is proposed as shown in Fig. 2(a). Since the proposed circuit has two auxiliary switches clamped on $V_{\rm s}/2$ instead of four auxiliary switches clamped on $V_{\rm s}/2$ for Weber's circuit and two auxiliary switches clamped on $V_{\rm s}$ for Sakai's

circuit, it features a lower cost of the production compared with prior circuits. Furthermore, the inductor currents are built up before the PDP is charged and discharged. These built-up inductor currents help to fully charge and discharge the PDP with fast transition time, achieve ZVS of main switches, and reduce the EMI noises. In particular, since these compensate for a large gas-discharge current, there is no severe voltage notch, and the current stress of main switches can be reduced effectively. Therefore, the proposed circuit features the high energy-recovery capability.

Fig. 2 Proposed circuit and its key waveforms

2. Operation of the proposed circuit

Fig. 2(b) shows key waveforms of the proposed circuit. One cycle operation is divided into six modes. It is assumed that C_1 , C_2 , C_3 and C_4 are equal to C_{oss} , V_{Cal} and V_{Ca2} are equal to $V_s/2$, and L_1 and L_2 are equal to L.

Mode 1(t_0^{\sim}t_1): When M_5 and M_6 are turned on at t_0 , mode 1 begins. Since $V_s/2$ is applied across L_1 and

L₂, i_{L1} and i_{L2} increase linearly with slope of V_s/(2L).

Mode $2(t_1^-t_2)$: When M_3 and M_4 are turned off at t_1 , mode 2 begins. L_1 and L_2 begins to charge C_p , C_3 and C_4 , and discharge C_1 and C_2 with initial conditions of $v_{Cp}(t_1)=-V_s$ and $I_{L0}=i_{L1}(t_1)=i_{L2}(t_1)=V_s(t_1-t_0)/(2L)$ as follows:

$$v_{C_p}(t) = -V_s \cos \omega (t - t_1) + I_{L0} \sqrt{\frac{2L}{C_p + C_{oss}}} \sin \omega (t - t_1)$$
 (1)

where $\omega=[1/\{2L(C_p+C_{oss})\}]^{0.5}$. As shown in equation (1), v_{Cp} increases from $-V_s$ by resonance between 2L and (C_p+C_{oss}) . And then, when v_{Cp} is clamped on V_s , the gas-discharge begins to take place. i_{L1} decreases linearly with slope $-V_s/(2L)$ through C_{a1} , M_6 , d_{y2} and D_1 . i_{L2} decreases linearly with slope $-V_s/(2L)$ through D_2 , d_{x1} , M_5 , and C_{a2} . Therefore, M_1 and M_2 can be turned on under ZVS, and C_p is fully charged to V_s .

Mode $3(t_2^-t_3)$: When M_1 and M_2 are turned on at t_2 , mode 3 begins. i_{L1} fed back to an input voltage source through C_{a1} , M_6 , d_{y2} and M_1 compensates for a large part of the gas-discharge current through M_1 , and i_{L2} fed back to an input voltage source through M_2 , d_{x1} , M_5 , and C_{a2} compensates for a large part of the gas-discharge current through M_2 . Therefore, the current stress of M_1 and M_2 can be considerably reduced as well as the voltage notch across the PDP can be effectively overcome. In this mode, when i_{L1} and i_{L2} decrease to zero, M_5 and M_6 are turned off. Voltages across M_5 and M_6 are clamped on $V_s/2$ due to C_{a1} and C_{a2} , which results in a low cost.

Therefore, the proposed circuit features the fully charged/discharged PDP, ZVS of main switches, no severe hard switching, less power dissipation, low surge current, and low EMI noise due to built-up inductor currents. Furthermore, it shows the high energy-recovery capability.

The circuit operation of t_3 t_6 is symmetric to that of t_0 t_3 .

3. Design considerations

Since the brightness of a PDP depends on the operation frequency and transition time, the transition time $T_d=t_2-t_1$ (= t_5-t_4) is required to be as fast as possible. The built-up time, $\triangle t_L=t_1-t_0$ (= t_4-t_3), of L=L₁=L₂ can be determined from the equation (1) as follows:

$$\Delta t_{L} = \frac{\sqrt{2L(C_{p} + C_{oss})}}{\tan[T_{d}/(2\sqrt{2L(C_{p} + C_{oss}))]}}$$
(2)

4. Experimental results

To verify the behavior and analysis of the proposed circuit, the prototype circuit is implemented with specifications of f_s =50kHz, C_p =2nF (6-inch PDP), $L=L_1=L_2=73\mu H$. transition time≤800ns, M₁~M₆=2SK2995. Fig. 3 shows the experimental results of the proposed circuit. As shown in Fig. 3(a), C_p is fully charged to V_s or $-V_s$ without hard switching due to built-up inductor currents. Moreover, since iL1 and iL2 compensate for the large amount of the gas-discharge current, the current stress of main switches and voltage notch are effectively reduced. M2 and M3 are turned on under ZVS without severe hard switching due to built-up inductor currents as shown in Fig. 3(b).

5. Conclusions

A new low-cost ERC for the PDP has been proposed. The proposed circuit has two auxiliary switches clamped on $V_s/2$, which results in a lower

(a) Key waveforms

(b) ZVS turn on M2 and M3 Fig. 3 Experimental Results

cost of the production compared with prior circuits. Due to the built-up inductor currents, the PDP is fully charged and discharged without hard switching, the ZVS of main switches is achieved, and the EMI noises is reduced. Moreover, since these compensate for a large gas-discharge current, there is no severe voltage notch, and the current stress of main switches can be reduced effectively. The proposed circuit features the high energy-recovery capability. Therefore, it is expected to be suitable for the low-cost PDP.

References

- [1] Weber, L. F., and Wood, M. B.: 'Energy recovery sustain circuit for the AC plasma display', *Proc. S. I. D.*, 1987, pp. 92-95.
- [2] Ohba, M., and Sano, Y.: 'Energy recovery driver for a dot matrix AC plasma panel with a parallel resonant circuit allowing power reduction', US Patent 5,670,974, September 1997.