• 제목/요약/키워드: Low-Si Steel

검색결과 141건 처리시간 0.038초

Corrosion Behavior Optimization by Nanocoating Layer for Low Carbon Steel in Acid and Salt Media

  • Ahmed S. Abbas;Bahaa Sami Mahdi;Haider H. Abbas;F.F. Sayyid;A.M. Mustafa;Iman Adnan Annon;Yasir Muhi Abdulsahib;A.M. Resen;M. M. Hanoon;Nareen Hafidh Obaeed
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, a SiC nano electroless nickel plating layer with excellent corrosion resistance was fabricated using the Taguchi method. The electroless plated low carbon steel was subjected to tests to examine the influence of corrosive media, microhardness, and corrosion rate on the corrosion resistance of this alloy. Three different corrosive media (HCl, Na2SO4, and NaCl) at various temperatures (80, 90, and 100 ℃) were used, and at three different times (40, 80, and 120 min.) with a speed of stirring equal to 500 rpm. The results of microhardness were found from 134.276 HV to 278.578 HV at various conditions, while the corrosion rate results were obtained from 0.89643 mpy to 7.12571 mpy at different circumstances. Corrosion, and mechanical characteristics were explained using Taguchi design. Taguchi technique was used to account for all possible combinations of elements in order to conduct a complete study. Models that link the response and procedure parameters were developed using the results of these tests, and the analysis of variance was utilized to validate these models (ANOVA). For maximum efficiency, a function called "desirability" was applied to all responses at once.

표면텍스처링된 이중구조 Ag/Al:Si 후면반사막의 광산란 특성 (Light Scattering Properties of Highly Textured Ag/Al:Si Bilayer Back Reflectors)

  • 장은석;백상훈;장병열;박상현;윤경훈;이영우;조준식
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.573-579
    • /
    • 2011
  • Highly textured Ag, Al and Al:Si back reflectors for flexible n-i-p silicon thin-film solar cells were prepared on 100-${\mu}m$-thick stainless steel substrates by DC magnetron sputtering and the influence of their surface textures on the light-scattering properties were investigated. The surface texture of the metal back reflectors was influenced by the increased grain size and by the bimodal distribution that arose due to the abnormal grain growth at elevated deposition temperatures. This can be explained by the structure zone model (SZM). With an increase in the deposition temperatures from room temperature to $500^{\circ}C$, the surface roughness of the Al:Si films increased from 11 nm to 95 nm, whereas that of the pure Ag films increased from 6 nm to 47 nm at the same deposition temperature. Although Al:Si back reflectors with larger surface feature dimensions than pure Ag can be fabricated at lower deposition temperatures due to the lower melting point and the Si impurity drag effect, they show poor total and diffuse reflectance, resulting from the low reflectivity and reflection loss on the textured surface. For a further improvement of the light-trapping efficiency in solar cells, a new type of back reflector consisting of Ag/Al:Si bilayer is suggested. The surface morphology and reflectance of this reflector are closely dependent on the Al:Si bottom layer and the Ag top layer. The relationship between the surface topography and the light-scattering properties of the bilayer back reflectors is also reported in this paper.

Investigation on the monotonic behavior of the steel rack upright-beam column connection

  • Cao, Yan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alaskar, Abdulaziz;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.103-115
    • /
    • 2020
  • The cold-formed steel storage racks are extensively employed in various industries applications such as storing products in reliable places and storehouses before distribution to the market. Racking systems lose their stability under lateral loads, such as seismic actions due to the slenderness of elements and low ductility. This justifies a need for more investigation on methods to improve their behavior and increase their capacity to survive medium to severe loads. A standardized connection could be obtained through investigation on the moment resistance, value of original rotational stiffness, ductility, and failure mode of the connection. A total of six monotonic tests were carried out to determine the behavior of the connection of straight 2.0 mm, and 2.6 mm thickness connects to 5 lug end connectors. Then, the obtained results are benched mark as the original data. Furthermore, an extreme learning machine (ELM) technique has been employed to verify and predict both moment and rotation results. Out of 4 connections, increase the ultimate moment resistance of connection by 13% and 18% for 2.0 mm and 2.6 mm upright connection, respectively.

다공성 금속 지지체에 제조된 실리카 분리막의 기체 투과 특성 (Preparation and Gas Permeation Properties of Silica Membranes on Porous Stainless Steel-Tube Supports)

  • 이혜련;서봉국
    • 멤브레인
    • /
    • 제24권3호
    • /
    • pp.177-184
    • /
    • 2014
  • 본 연구에서 고투과도를 갖는 실리카 분리막은 콜로이달 실리카 졸과 고분자형 실리카 졸 두 가지를 DRFF법과 SRFF법으로 다공성 금속 지지체 위에 코팅하여 제조되었다. 실리카 졸은 졸-겔법으로 테트라에톡시실란(TEOS)에 의하여 제조되었고, 각각의 졸은 동적광산란법(DLS), 전계방사 주사전자현미경(FE-SEM), 질소 흡착법 등을 이용하여 그 특성을 평가하였다. 다공성 금속 지지체위에 콜로이달 실리카 졸로 중간층을 형성하여 치밀한 구조의 실리카 층을 형성한 후 그 위에 분리층으로 고분자형 실리카 졸을 코팅하여 핀홀을 줄이는 방법으로 기체분리용 분리막을 제조하였다. FE-SEM으로 분리막의 코팅 층을 분석한 결과 분리층은 중간층보다 침밀한 구조를 가지고 있음을 확인하였고 기체투과 결과 수소 투과도 $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ 분포를 보였다.

적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성 (Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator)

  • 정귀상;김재민;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향 (Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

무기바인더의 내수강도 발현에 미치는 식물성 왁스의 영향 (Influence of vegetable wax on the moisture strength development of inorganic binder)

  • 배민아;김경호;이만식;백재호
    • 한국산학기술학회논문지
    • /
    • 제21권10호
    • /
    • pp.574-580
    • /
    • 2020
  • 무기바인더는 저온에서 경화가 가능하며, 유해가스를 배출하지 않는 친환경성과 중자 조형 시 성형된 제품의 결함이 작다는 장점으로 인해 주조 산업에 적용하고자 관련 연구가 급속도로 진행되고 있다. 그러나 실리케이트(SiO2-Na2O)를 주성분으로 하는 무기바인더는 실리케이트 특유의 흡습성으로 인해 공기 중 수분을 흡습하여 결합력이 약해져 주형의 강도가 급격히 감소하는 문제가 있다. 특히 주강 주조에 사용되는 사형 주형의 경우 알루미늄 주조보다 높은 주입 온도로 인해 고강도의 주물 특성을 요구한다. 이에 본 연구에서는 무기바인더의 강도와 흡습성을 개선하기 위해 에스테르기를 함유하는 왁스를 이용하여 이를 효율적으로 합성하는 방법을 연구하였다. 또한 합성된 무기바인더의 특성을 XRF와 TGA를 통해 확인하고, 일반강도와 내수강도 평가를 진행하여 주형의 강도 개선 여부를 확인하였다. 그 결과 에스테르기를 함유하는 왁스를 포함한 무기바인더의 경우 일반 강도가 증가하였으며, 특히 내수강도가 118 N/㎠에서 216 N/㎠까지 증가하여 약 55 %의 내수강도 개선 효과를 확인하였다. 또한 실제 주강 제품을 제작한 뒤 주조를 통해 우수한 주조 특성을 확인하였다.

Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과 (Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy)

  • 이성열;원종필;박동현;문경만;이명훈;정진아;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

Fe-l6Cr 페라이틱 합금에 증착된 Y-Cr 이층 박막의 800℃ 열처리 후의 구조 및 전기적 특성 (Structural and Electrical Properties of the Y-Cr Bilayer Deposited on Fe-l6Cr Ferritic Alloy after Heat Treatment at 800℃)

  • 이용진;김상우;김긍호;이종호;안진호
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.36-42
    • /
    • 2003
  • The oxidation behaviors of Y-Cr bilayer deposited on ferritic steel by magnetron-sputtering for application of the Fe-Cr alloys as interconnectors of planar-type solid oxide fuel cells (SOFCs) were studied. After oxidation at $800^{\circ}C$ for 40 hours, the major phase of $Y_2$$O_3$and the minor phase of $YCrO_3$, $Mn_{1.5}$ $Cr_{1.5}$ $O_4$and Cr$_2$SiO$_4$were formed in the Y/Cr bilayered samples, while the major phase of Cr$_2$O$_3$and the minor phase of $Y_2$$O_3$were formed as the major phase in the Cr/Y bilayered samples. The Log(ASR/T) that expresses electric resistance of the Y/Cr coated specimen with nonconducting $_Y2$$O_3$oxide showed high value of -2.80 Ω$\textrm{cm}^2$$K^{-1}$ / and that of the Cr/Y coated specimen with conducting $Cr_2$$O_3$oxide appeared to be -4.11 Ω$\textrm{cm}^2$$^{K}$ . The electric resistance of the Y/Cr coated specimen was largely increased due to the formation of high resistance oxide scales. However, the Cr/Y coated specimen did not show any increase in the electric resistance and had the long-term stability of oxidation because there was no formation of the secondary phases with low conductivity.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.