• Title/Summary/Keyword: Low-E glass

Search Result 199, Processing Time 0.025 seconds

Electrical characteristics of poly-Si NVM by using the MIC as the active layer

  • Cho, Jae-Hyun;Nguyen, Thanh Nga;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.151-151
    • /
    • 2010
  • In this paper, the electrically properties of nonvolatile memory (NVM) using multi-stacks gate insulators of oxide-nitride-oxynitride (ONOn) and active layer of the low temperature polycrystalline silicon (LTPS) were investigated. From hydrogenated amorphous silicon (a-Si:H), the LTPS thin films with high crystalline fraction of 96% and low surface's roughness of 1.28 nm were fabricated by the metal induced crystallization (MIC) with annealing conditions of $650^{\circ}C$ for 5 hours on glass substrates. The LTPS thin film transistor (TFT) or the NVM obtains a field effect mobility of ($\mu_{FE}$) $10\;cm^2/V{\cdot}s$, threshold voltage ($V_{TH}$) of -3.5V. The results demonstrated that the NVM has a memory window of 1.6 V with a programming and erasing (P/E) voltage of -14 V and 14 V in 1 ms. Moreover, retention properties of the memory was determined exceed 80% after 10 years. Therefore, the LTPS fabricated by the MIC became a potential material for NVM application which employed for the system integration of the panel display.

  • PDF

Curing Behaviors of Transparent Aliphatic Epoxy Acrylate by Electron Beam Irradiation (광투과성 지방족 에폭시 아크릴레이트의 전자선 경화 특성 연구)

  • Park, Sang-Yul;Son, Hyemi;Myung, Dongshin;Kim, Myung-Hwa;Seo, Young-Soo
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.302-307
    • /
    • 2013
  • We synthesized aliphatic epoxy acrylate monomer by the reaction of glycerol diglycidyl ether and acrylic acid. The reaction was monitored by FTIR, Raman spectroscopy and $^1H$ NMR. Electron-beam (E-beam) curing behaviors of the synthesized monomer were studied by spectroscopic analysis, glass transition temperature, and tensile properties. We found that curing reaction was complete in a low dosage of ca. 30 kGy. The viscosity of monomer was a low enough for coating without using diluents and the cured sample was highly transparent, indicating that the monomer can be used for an E-beam curable coating material on transparent optical films.

Valorization of Pineapple Peel Waste for Sustainable Polyhydroxyalkanoates Production

  • Kannika Bunkaew;Kittiya Khongkool;Monthon Lertworapreecha;Kamontam Umsakul;Kumar Sudesh;Wankuson Chanasit
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.257-267
    • /
    • 2023
  • The potential polyhydroxyalkanoates (PHA)-producing bacteria, Bacillus megaterium PP-10, was successfully isolated and studied its feasibility for utilization of pineapple peel waste (PPW) as a cheap carbon substrate. The PPW was pretreated with 1% (v/v) H2SO4 under steam sterilization and about 26.4 g/l of total reducing sugar (TRS) in pineapple peel hydrolysate (PPH) was generated and main fermentable sugars were glucose and fructose. A maximum cell growth and PHA concentration of 3.63 ± 0.07 g/l and 1.98 ± 0.09 g/l (about 54.58 ± 2.39%DCW) were received in only 12 h when grown in PPH. Interestingly, PHA productivity and biomass yield (Yx/s) in PPH was about 4 times and 1.5 times higher than in glucose. To achieve the highest DCW and PHA production, the optimal culture conditions e.g. carbon to nitrogen ratios of 40 mole/mole, incubation temperature at 35℃ and shaking speed of 200 rpm were performed and a maximum DCW up to 4.24 ± 0.04 g/l and PHA concentration of 2.68 ± 0.02 g/l (61% DCW) were obtained. The produced PHA was further examined its monomer composition and found to contain only 3-hydroxybutyrate (3HB). This finding corresponded with the presence of class IV PHA synthase gene. Finally, certain thermal properties of the produced PHA i.e. the melting temperature (Tm) and the glass transition temperature (Tg) were about 176℃ and -4℃, respectively whereas the Mw was about 1.07 KDa ; therefore, the newly isolated B. megaterium PP-10 is a promising bacterial candidate for the efficient conversion of low-cost PPH to PHA.

The Hydrogenated Micro-crystalline Silicon(${\mu} c-Si:H$) Films Deposited by Hot Wire CVD Method (Hot Wire CVD법에 의한 수소화된 미세결정 실리콘(${\mu} c-Si:H$) 박막 증착)

  • Lee, Jeong-Cheol;Song, Jin-Su;Park, Lee-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.17-27
    • /
    • 2000
  • This paper presents deposition and characterization of hydrogenated microcrystalline silicon (${\mu}c$ -Si:H) films on low cost glass substrate by Hot Wire CVD(HWCVD). The HWCVD ${\mu}c$ -Si:H films had deposition rates ranging from 2${\AA}$/sec to 35${\AA}$/sec with the variations of preparation conditions, which was 10 times higher than that of the films obtained from the conventional PECVD method. From the Raman spectroscopy, the prepared silicon films were found to be composed of the mixture of crystalline and amorphous phases. The crystalline volume fraction and average crystallite size, obtained from the Raman To mode peak near 520cm$^{-1}$, were 37-63% and 6-10 nm, respectively. The conductivity activation energy($E_a$) of the ${\mu}c$ -Si:H films, representing the difference of conduction band and Fermi level in an intrinsic semiconductors, increased from 0.22eV to 0.68eV with increasing pressure from 30mTorr to 300mTorr. The increase of $E_a$ with pressure indicates that the deposited films have properties close to intrinsic semiconductors, which is also proved with low dark conductivity of the ${\mu}c$ -Si:H deposited at 300mTorr. The tungsten concentration incorporated into films was about $6{\times}10^{16}atoms/cm^3$ in the samples prepared at wire temperature of 1800$^{\circ}C$.

  • PDF

Correlation between Probe Frequency and Echo-Pulse Velocity for Ultrasonic Testing of a Fiber-Reinforced Plastic Hull Plate (복합소재 선체 외판의 초음파 탐상을 위한 탐촉자 주파수와 수신기 음향 속력의 상관관계)

  • Lee, Sang-gyu;Han, Zhiqiang;Lee, Chang-woo;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Nondestructive testing is one of the most commonly used quality inspection methods for evaluating ship structures. However, accurate evaluation is dif icult because various composite materials, such as reinforcements, resin, and fiber-reinforced plastics (FRPs), are used in hulls, and manufacturing quality differences are likely to exist owing to the fabrication environment and the skill level of workers. This possibility is especially true for FRP ships because they are significantly thicker than other structures, such as automobiles and aircraft, and are mainly manufactured using the hand lay-up method. Because the density of a material is a critical condition for ultrasonic inspection, in this study, a hull plate was selected from a vessel manufactured using e-glass fiber, which is widely used in the manufacture of FRP vessels with the weight fraction of the glass content generally considered. The most suitable ultrasonic testing conditions for the glass FRP hull plate were investigated using a pulse-echo ultrasonic gauge. A-scans were performed with three probes (1.00, 2.25, and 5.00 MHz), and the results were compared with those of the hull plate thickness measured using a Vernier caliper. It was found that when the probe frequency was higher, the eco-pulse velocity of the receiver had to be lowered to obtain accurate measurement results, whereas fewer errors occurred at a relatively low probe frequency.

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Distributions and Behaviors of H2O2 Above the Yellow Sea in the Years Between 2002 and 2004 (2002년에서 2004년 동안 서해상공에서 관측된 과산화수소의 농도분포 및 거동)

  • Kim Y.M.;Shin S.A.;Han J.S.;Lee M.H.;Kim J.A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.689-697
    • /
    • 2005
  • Hydrogen peroxide is a reservoir of OH radical which is the powerful oxidant in the atmosphere. Therefore, the status of the oxidizing atmosphere could be reflected on the concentration of $H_{2}O_{2}$. In this study, the distribution of $H_{2}O_{2}$ was determined during the intensive aircraft measurements over the Yellow sea in March, December 2002, April, November 2003 and March, October 2004. Flights covered from $124^{circ}E\;to\;129^{circ}E\;and\;35^{circ}N\;to\;37^{circ}N$, and extending to 3,000 m. The flight patterns were set properly to assess the altitudinal and longitudinal distribution for $H_{2}O_{2}$. $H_{2}O_{2}$ was extracted onto aqueous solution using a continuously flowing glass coil and analyzed by a high performance liquid chromatography (HPLC) accompanied with a fluorescence detector using postcolumn enzyme derivatization. Mixing ratios of $O_{3},\;NO_{x}\;and\;SO_{2}$ were measured in real time by commercial analysis instruments. Along the heights, the maximum concentration of $H_{2}O_{2}$ appeared around 1,500 m then gradually decreased with increasing altitude. The vertical behavior of ozone showed the similar trend to $H_{2}O_{2}$. The mean mixing ratio of $NO_{x}$ was about 2 ppbv and not showed clear vertical distribution patterns. The mean value of was the same as $NO_{x}$ however $SO_{2}$ appeared extreme concentration in low altitude. $H_{2}O_{2}\;and\;O_{3}$ showed even longitudinal distribution however $NO_{x}$ mixing ratio in land ($127^{circ}E$) was much higher than over the sea. $SO_{2}$ rather decreased with increasing longitude. $H_{2}O_{2}$ was in inverse proportion to $NO_{x}$ in spring and summer and $SO_{2}$ in spring, which indicated its significant role to NO and $SO_{2}$ oxidation pathways.

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF

Recrystallized poly-Si TFTs on metal substrate (금속기판에서 재결정화된 규소 박막 트랜지스터)

  • 이준신
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 1996
  • Previously, crystallization of a-Si:H films on glass substrates were limited to anneal temperature below 600.deg. C, over 10 hours to avoid glass shrinkage. Our study indicates that the crystallization is strongly influenced by anneal temperature and weakly affected by anneal duration time. Because of the high temperature process and nonconducting substrate requirements for poly-Si TFTs, the employed substrates were limited to quartz, sapphire, and oxidized Si wafer. We report on poly-Si TFT's using high temperature anneal on a Si:H/Mo structures. The metal Mo substrate was stable enough to allow 1000.deg. C anneal. A novel TFT fabrication was achieved by using part of the Mo substrate as drain and source ohmic contact electrode. The as-grown a-Si:H TFT was compared to anneal treated poly-Si TFT'S. Defect induced trap states of TFT's were examined using the thermally stimulated current (TSC) method. In some case, the poly-Si grain boundaries were passivated by hydrogen. A-SI:H and poly-Si TFT characteristics were investigated using an inverted staggered type TFT. The poly -Si films were achieved by various anneal techniques; isothermal, RTA, and excimer laser anneal. The TFT on as grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. Some films were annealed at temperatures from 200 to >$1000^{\circ}C$ The TFT on poly-Si showed an improved $I_on$$I_off$ ratio of $10_6$, reduced gate threshold voltage, and increased field effect mobility by three orders. Inverter operation was examined to verify logic circuit application using the poly Si TFTs.

  • PDF