• Title/Summary/Keyword: Low voltage wire

Search Result 96, Processing Time 0.025 seconds

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

A Study on Reduction Factor in Allowable Current of IEC Low-Voltage Wire (IEC 저압간선의 허용전류 감소계수에 관한 연구)

  • Song, Young-Joo;Lim, Myung-Hwan;Choi, Dae-Won;Kim, Do-Hyung;Yeum, Sung-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.100-108
    • /
    • 2010
  • A low voltage wire should be used considering that a load used in the end is a low voltage. In regard to these wires, there are needs for research about the wire thickness calculation in accordance with IEC standard because the standardization process for IEC (KS standard) was completed on June 30, 2005, and they stopped producing NEC-standard products by the order from Korean Agency for Technology and Standards under Ministry of Knowledge Economy (former Ministry of Commerce, Industry and Energy) since July 1, 2006. This study compared, in terms of the thickness calculation of low voltage wire, a reduction factor application by IEC standard about allowed current and an application for calculation of voltage drop. It also proposed the formula for IEC standard to decrease errors and resolve the difficulty of standardized calculation by analyzing the difference between simplified formula and standardized formula that are the most frequently used calculation method of voltage drop.

Design of the Bare Electric Wire for Low Loss (나전선(裸電線)의 저손실화 설계)

  • Jeong, Y.H.;Lee, H.K.;Shon, H.K.;Cho, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.101-103
    • /
    • 1998
  • New transmission lines are gradually constructed with high voltage and power for increase of electric power demands. And electric losses that are produced in line are increased. we made the algorithm for low loss wire and developed the computer program that makes loss of electric wire to be decreased for efficient power transmission. Electric wire is designed not to be decreased electrical and mechanical properties than that of existing electric wire.

  • PDF

A Study on the Calculation of Reference Impedances in Domestic Low-Voltage Power System (저압설비 플리커 특성평가를 위한 국내 저압계통 기준 임피던스 산정 연구)

  • Kang, Moon-Ho;Song, Yang-Hoe;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1651-1655
    • /
    • 2011
  • The reference impedances which is about 95% supply impedance value of residential consumers' supply impedances was published by IEC in 1980. The reference impedances are the standard values for use in determining the voltage disturbance characteristics of electrical equipment like the flicker. In IEC 60725, the reference impedances for premises having service current capacities less than 100A per phase and for service current capacities more than 100A per phase are recommended. And these reference impedances are targeted for the countries using 50Hz power frequency. Because of the frequency difference, the reactance values of the reference impedances will be increased in 60Hz power system like Korea, And also the reference impedances are different significantly each other according to declared voltage variation, power consumption and service wire length etc. Therefore It is needed to calculate the reference impedances suitable for domestic low-voltage power system. In this paper, the reference impedances for service current capacities less than 100A in 220/380V, 60Hz single-phase two wire and three-phase four wire low-voltage system are calculated, And the equations for service current capacities more than 100A to calculate the modulus value of maximum supply impedances are suggested base on IEC 60725 and the reference impedances for those are calculated on service current of 100A per phase.

Comparison of Voltage Unbalance Factor for Line and Phase Voltage (선간전압과 상전압에 대한 전압불평형율의 비교)

  • Kim Jong-Gyeum;Park Young-Jeen;Lee Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.403-407
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetric components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved by the unbalanced load at the 3-phase 4-wire system. Line and phase voltage unbalance leads to different results due to zero-sequence component. So that it is difficult to analyse voltage unbalance factor by the conventional analytical method, This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

Resistance Increase Behavior of HTS Wire with Stabilizer Layer on Applied Over-currents

  • Du, Ho-Ik;Kim, Min-Ju;Doo, Seung-Gyu;Kim, Yong-Jin;Han, Byoung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.62-65
    • /
    • 2009
  • YBCO-coated conductors, called "second-generation wires," show a remarkably greater increase in the amount or speed of their resistance than BSCCO wires when a quench occurs. This is probably because of the specific resistance at their stabilizer layer, which also affects their voltage grade. YBCO coated conductors with copper as a stabilizer layer have a voltage grade of 1.5-2 V/cm, and those with stainless steel as a stabilizer layer have a voltage grade of about 0.5-0.6 V/cm. The voltage grade of YBCO coated conductors is important in selecting and applying superconducting wires to power instruments later. In this study, two kinds of YBCO-coated conductors with different stabilizer layers and one kind of BSCCO wire were prepared. Among them, based on the YBCO coated conductors that had a stainless steel stabilizer layer with a low voltage grade, five kinds of experimental samples for joining were prepared with the remaining two kinds of wires. Using the prepared samples, the current application properties and the resistance increase in the flux-flow and the quench states of the single wire and the joined wires were compared.

Safety Countermeasure of the distribution box of service wire (인입선 분기함의 안전대책에 관한 연구)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Lee, Hyun-Goo;Kim, Dae-Kyeong;Ha, Yoon-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.246-248
    • /
    • 2004
  • The lower voltage distribution box of service wire has been usually employed to supply an electric power to the consumers through low voltage overhead line. Now-a-days, electric shock accident at the distribution box of service wire installed in the seashore areas has been often occurred. The reason is mainly due to the electric leakage in the distribution box of service wire. This paper described insulation breakdown mechanism of distribution box of service wire, analysis of electric shock path and safety countermeasure of distribution box of service wire.

  • PDF

Voltage Unbalance Factor for Phase and Line Voltage (상전압 및 선간전압에 대한 불평형율)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Lee, Jong-Han;Lee, Eun-Wong;Park, Jong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.74-77
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetrical components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved at the 3-phase 4-wire system by the unbalanced load, by the conventional analytical method, line and phase voltage unbalance leads to different results due to zero-sequence component. This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

  • PDF

A Study on the Hand drum form of Wire-Cut Electric Discharge Machining (와이어 방전가공에 의한 북현상에 관한 연구)

  • 김원일;이재명;강종표
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.9-14
    • /
    • 1997
  • From the experimental study of wire-cut Electric Discharge Machining for alloyed steel and tungsten carbide, the characteristics such as hand drum form has been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, their thickness become thinner, wire tension become larger and number of cutting is done so many times. When wire-cut 60mm thickness tungsten carbide in normal condition, Hand drum form becomes larger due to the low conductivity inducing cobalt composite rising by electrolysis.

  • PDF

Characteristics Analysis of 3-phase Induction Generator at the Unbalanced Load Operation (불평형 부하 운전시 3상 유도발전기 특성 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.123-128
    • /
    • 2007
  • Hydro power supplies no pollution energy, mainly induction generator has been applied at the small capacity power station. The generating power of small hydro-electric power station connects on the 22.9kV distribution system or low voltage system in the case of three-phase four-wire supply system. There are side effects of various kinds in the 3-three phase 4-wire distribution system mixing 1-phase load and 3-phase load. This system generates the voltage unbalance by unbalanced load operating condition. They have various serious effects on generator and connection system. In this paper, we analyzed what kind of operation characteristic are happened in the induction generator by customer load variation at the 3-three phase 4-wire distribution system.