• 제목/요약/키워드: Low volatile fuel

검색결과 47건 처리시간 0.029초

저 기화성 연료를 사용한 직접분사식 과급 가솔린엔진에서 전 부하 스모크 저감을 위한 시스템 최적화에 관한 연구 (An Experimental Analysis for System Optimization to Reduce Smoke at WOT with Low Volatile Fuel on Turbo GDI Engine)

  • 김도완;이승환;임종석;이성욱
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.97-104
    • /
    • 2015
  • This study is a part of the high pressure injection system development on the Turbo GDI engine in order to reduce smoke emission in case of using the low volatile(high DI) fuel which is used as normal gasoline fuel in the US market. Firstly, theoretical approach was done regarding gasoline fuel property, performance, definition of particle matters and its creation as well as problems of the high DI fuel. In this experimental study, 2L Turbo GDI engine was selected and optimized system parameter was inspected by changing fuel, fuel injection mode (single/multiple), fuel pressure, distance between injector tip and combustion chamber, start of injection, intake valve timing in engine dyno at all engine speed range with full load. In case of normal gasoline fuel, opacity was contained within 2% in all conditions. On the other hands, in case of low volatile fuel (high DI fuel), it was confirmed that the opacity was rapidly increased above 5,000 rpm at 14.5 ~ 20 MPa of fuel pressure and there were almost no differences on the opacity(smoke) between 17 MPa and 20 MPa fuel pressure. According to the SOI retard, smoke decrease tendency was observed but intake valve close timing change has almost no impact on the smoke level in this area. Consequently, smoke decrease was observed and 16% at 6000rpm respectively with injector washer ring installed. By removing injector washer to make injector tip closer to the combustion chamber, smoke decrease was observed by 46% at 5,500 rpm, 42% at 6,000 rpm. It is assumed that the fuel injection interaction with cylinder head, piston head, intake and exhaust valve is reduced so that impingement is reduced in local area.

음식물쓰레기로 부터 제조한 분체연료 연소특성 (A Study on Combustion Characteristics of Pulverized Fuel Made from Food Waste)

  • 손현석;박영성;김상국
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.37-43
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000 Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio (fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combustor temperature reaches about $1000^{\circ}C$ and CO is 77-103 ppm at 1.55 excess air ratio and SOx and Cl are under 2 ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy at the age of high oil price.

  • PDF

음식물쓰레기로부터 제조한 분체연료 연소특성 (A Study on Combustion Characteristics of Purverized Fuel Made from Food Waste)

  • 손현석;박영성;윤종득;이호남;이승훈;김상국
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio(fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combueter temperature reaches about $1000^{\circ}C$ and CO is 77-103ppm at 1.55 excess air ratio and SOx and Cl are under 2ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy for high oil price era

  • PDF

Recent Progress in Nanoparticle Synthesis via Liquid Medium Sputtering and its Applications

  • Cha, In Young;Yoo, Sung Jong;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.13-26
    • /
    • 2016
  • Nanoparticles (NPs), which have been investigated intensively as electrocatalysts, are usually synthesized by chemical methods that allow precise size and shape control. However, it is difficult to control the components and compositions of alloy NPs. On the other hand, the conventional physical method, sputtering with solid substrates, allows for facile composition control but size control is difficult. Recently, “liquid medium sputtering” has been suggested as an alternative method that is capable of combining the advantages of the chemical and conventional physical methods. In this review, we will discuss NP synthesis via the liquid medium sputtering technique using ionic liquid and low-volatile polymer media. In addition, potential applications of the technique, including the generation of oxygen reduction reaction electrocatalysts, will be discussed.

공기다단 적용 석유코크스 연료 전용 연소기에 대한 실험적 연구 (An Experimental Study of Petroleum Cokes Air Staged Burner)

  • 권민준;이창엽;김세원
    • 한국연소학회지
    • /
    • 제20권2호
    • /
    • pp.40-45
    • /
    • 2015
  • This study is aimed to study combustion characteristics of low $NO_X$ burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and relatively low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. The petroleum cokes burner is operated at fuel rich condition, and overfire air are supplied to achieve fuel lean condition. The low $NO_X$ burner is designed to control fuel and air mixing to achieve air staged combustion, in addition secondary and tertiary air are supplied through swirler. Air distribution ratio of triple staged air are optimized experimentally. The result showed that $NO_X$ concentration is lowest when overfire air is used, and the burner function at a fuel rich condition.

인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가 (Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals)

  • 김수현;;유지호;이시훈;임영준;임정환;김상도;전동혁;최호경
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

Case study on operating characteristics of gas fueled ship under the conditions of load variation

  • Chun, Jung-Min;Kang, Ho-Keun;Kim, You-Taek;Jung, Mun-Hwa;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.447-452
    • /
    • 2016
  • The use of gas as fuel, particularly liquefied natural gas (LNG), has increased in recent years owing to its lower sulfur and particulate emissions compared to fuel oil or marine diesel oil. LNG is a low temperature, volatile fuel with very low flash point. The major challenges of using LNG are related to fuel bunkering, storing, and handling during ship operation. The main components of an LNG fuel system are the bunkering equipment, fuel tanks, vaporizers/heaters, pressure build-up units (PBUs), and gas controlling units. Low-pressure dual-fuel (DF) engines are predominant in small LNG-powered vessels and have been operating in many small- and medium-sized ferries or LNG-fueled generators.(Tamura, K., 2010; Esoy, V., 2011[1][2]) Small ships sailing at coast or offshore rarely have continuous operation at constant engine load in contrast to large ships sailing in the ocean. This is because ship operators need to change the engine load frequently due to various obstacles and narrow channels. Therefore, controlling the overall system performance of a gas supply system during transient operations and decision of bunkering time under a very poor infrastructure condition is crucial. In this study, we analyzed the fuel consumption, the system stability, and the dynamic characteristics in supplying fuel gas for operating conditions with frequent engine load changes using a commercial analysis program. For the model ship, we selected the 'Econuri', Asia's first LNG-powered vessel, which is now in operation at Incheon Port of South Korea.

휘발성 유기화합물의 주요 배출원의 배출물질 구성비에 관한 연구-오존 생성 전구물질을 중심으로- (A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources)

  • 김소영;한진석;김희강
    • 한국대기환경학회지
    • /
    • 제17권3호
    • /
    • pp.233-240
    • /
    • 2001
  • The composition of volatile organic compounds (VOCs) was anlyzed for major emission sources such as vehicle exhaust, gasoline and diesel vapor, organic solvent vapor, and butane fuel gas. Low carbon-numbered hydrocarbons were found to be the dominant components of gasoline vehicle exhaust. In gasoline evaporative vapor, the predominant constituents were found to be butane and iso-pentane regardless of ambient air temperature. In case of diesel evaporative vapor was similar to those of gasoline evaporative vapor. The composition of organic solvent vapor from painting, ink and petroleum consisted mostly or aromatic compounds such as toluene and m, p, o-xylene. The hydrocarbon fraction of butane fuel gas. which is used by portable bunner, consisted mainly of propane (34%) and butane(70%).

  • PDF

음식물쓰레기로부터 제조한 분체연료의 연소에 의한 에너지회수 특성 (Energy recovery characteristics by combustion of pulverized fuel made from food waste)

  • 김상국;권효리
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.329-330
    • /
    • 2009
  • Food waste contains almost no heavy metals and high fuel ratio 0.14-0.17 that makes it a good candidate for solid fuel. Thermogravimetric analysis showed that volatile matter volatilizes at $200-400^{\circ}C$, and ignition temperature is $460^{\circ}C$. Combustion efficiency measured from energy balance before and after combustion was over 99%. Pulverized fuel made from food waste is a new and renewable energy which contribute to low carbon green economic growth.

  • PDF

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.