• Title/Summary/Keyword: Low total harmonic distortion

Search Result 121, Processing Time 0.022 seconds

Dimming Control System for Multi-Fluorescent Lamp Using Chopper Technique (Chopper 방식을 이용한 형광등의 집단조광제어 시스템 개발)

  • Jeon, Kyoung-Jun;Lim, Byoung-Noh;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1584-1588
    • /
    • 2007
  • This paper proposed the voltage compulsion method that used chopper for light dimming control of fluorescent lamp. During the dimming period, electronic ballasts have the bad characteristics such as low power factor, high THD(Total Harmonic Distortion) and etc. The proposed dimmer improves power factor, THD of electronic ballast and has benefit such as low cost, simple build up.

Power Factor Improvement of Single-Phase Three-level Boost Converter (단상 Three-level boost converter의 역률개선)

  • 서영조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.384-387
    • /
    • 2000
  • In this paper Power factor correction circuit of single-phase three-level boost converter is proposed. The advantage of the proposed control scheme for three-level boost converter are low blocking voltage of each power device low THD(Total Harmonic Distortion) and high power factor. The control scheme is based on the current comparator capacitor compensator and region detector, In simulations the proposed system is validated.

  • PDF

Flyback AC-DC Converter with Low THD Based on Primary-Side Control

  • Chang, Changyuan;He, Luyang;Cao, Zixuan;Zhao, Dadi
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1642-1649
    • /
    • 2018
  • A single-stage flyback LED AC-DC converter based on primary-side control under constant current mode is proposed in this study. The proposed converter features low total harmonic distortion (THD) and high power factor (PF). It also consists of a zero-crossing distortion compensation circuit and a variable duty ratio control compensation circuit to deal with the line current distortions caused by fixed duty ratio control. The system model and layout are built in Simplis and Cadence, respectively. The feasibility and performance of the proposed circuit is verified by designing and fabricating an IC controller in the HHNEC $0.35{\mu}m$ 5 V/40 V HVCMOS process. Experimental results show that the PF can reach a level in the range of 0.985-0.9965. Moreover, the average THD of the entire system is approximately 10%, with the minimum being 6.305%, as the input line voltage changes from 85 VAC to 265 VAC.

A Study on the Design of Triple-tuned Filter for Line Commutated Converter HVDC (HVDC시스템 적용을 위한 Triple-tuned 필터 설계방법 연구)

  • Lee, Seong-Doo;Choi, Soon-Ho;Kim, Chan-Ki;Cha, HanJu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1288-1296
    • /
    • 2015
  • The ac side current of a line commutated converter(LCC) high voltage direct current (HVDC) is characterized by highly non-sinusoidal waveform. If the harmonic current is allowed to flow in the connected ac network, it may cause unacceptable levels of distortion. Therefore, ac side filters are required as part of the total HVDC converter station, in order to reduce the harmonic distortion of the ac side current and voltage to acceptably low levels. The ac filters are also employed to compensate the requested reactive power because LCC HVDC also consume substantial reactive power. Among different types of filters, triple-tuned filters have been widely utilized for HVDC system. This paper presents two design methods of triple-tuned filter; equivalent method and parametric method. Using a parametric method, in particular this paper proposes a design algorithm for a triple tuned filter. Finally, the performance of the design algorithm is evaluated for a 250kV HVDC system in Jeju island. The results cleary demonstrate the effectiveness of proposed design method in harmonics reduction.

A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator (직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법)

  • Jang, Hoon;Lee, Woo-Cheol;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

Double-tuned Filter Design For HVDC System (HVDC System 적용 Double-tuned 필터의 설계 방법 연구)

  • Lee, Hee-Jin;Nam, Tae-Sik;Son, Gum-Tae;Park, Jung-Wook;Chung, Yong-Ho;Lee, Uk-Hwa;Baek, Seung-Taek;Hur, Kyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1232-1241
    • /
    • 2012
  • The ac side current of an high voltage direct current (HVDC) converter is characterized by highly non-sinusoidal waveform. If the harmonic current is allowed to flow in the connected ac system, it may cause unacceptable levels of distortion. Therefore, ac side filters are required as part of the total HVDC converter station, in order to reduce the harmonic distortion of the ac side current and voltage to acceptably low levels. The ac side filters are also employed to compensate network requested reactive power because HVDC converters also consume substantial reactive power. Among different types of filters, double-tuned filters have been widely utilized for HVDC system. This paper presents two design methods of double-tuned filter; equivalent method and parametric method. Using a parametric method, in particular the paper proposes a new design algorithm for a realistic system. Finally, the performance of the design algorithm is evaluated for a 80kV HVDC system in Jeju island with PSCAD/EMTDC program. The results cleary demonstrate the effectiveness of proposed design method in harmonics elimination and steady-state stability.

Analysis of Harmonic Currents Propagation on the Self-Excited Induction Generator with Nonlinear Loads

  • Nazir, Refdinal
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1935-1943
    • /
    • 2014
  • In recent years, the induction machines are increasingly being used as self-excited induction generators (SEIG). This generator is especially widely employed for small-scale power plants driven by renewable energy sources. The application of power electronic components in the induction generator control (IGC) and the loading of SEIG using nonlinear loads will generate harmonic currents. This paper analyzes the propogation of harmonic currents on the SEIG with nonlinear loads. Transfer function method in the frequency domain is used to calculate the gain and phase angle of each harmonic current component which are generated by a nonlinear loads. Through the superposition approach, this method has also been used to analyze the propagation of harmonic currents from nonlinear load to the stator windings. The simulation for the propagation of harmonic currents for a 4 pole, 1.5 kW, 50Hz, 3.5A, Y-connected, rotor-cage SEIG with energy-saving lamps, have provided results almost the same with the experiment. It can prove that the validity of the proposed models and methods. The study results showed that the propagation of harmonic currents on the stator windings rejects high order harmonics and attenuates low order harmonics, consequently THDI diminish significantly on the stator windings.

A study on the THD reduction of single phase 2 level inverter for grid connection for ship (선박 계통연계형 단상 2레벨 인버터의 THD 저감에 관한 연구)

  • Kim, Jung-Hoon;Kim, Sung-Hwan;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • There are 440V and 220V electric source in ship. A 440V source is used to drive the power system such as crane and winch on deck and pump in engine room, and a 220V source is used to drive the power source for residential zones, control devices in engine room. In this paper, we made single phase inverter system for grid connection with 220V source for ship, and analyzed THD(Total harmonic distortion) by variation of parameters of L-C low pass filter and deadtime of inverter switching.

Single-Stage Quasi Resonant Type PSR(Primary Side Regulation) PWM Converter for the LED Drive in TRIAC Phase Controlled Dimmer (TRIAC위상 제어 조광기에서의 LED구동을 위한 Single-Stage 준 공진형 PSR(Primary Side Regulation) PWM 컨버터)

  • Han, Jae-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.84-94
    • /
    • 2013
  • In case when the existing TRIAC phase controlled dimmer is drove for the LED lighting equipments, there are many problems such as the LED flicker in low phase-angles, the acoustic noise and elements damage by increase of the peak voltage in the input filter capacitor, mulfunction by insufficiency of the TRIAC holding current, and the abnormal oscillation by LC resonant. In this paper, we proposes the single-stage quasi-resonant PSR(Primary Side Regulation) PWM converter, and the design, the simulation and experiment are performed. As a result, it could confirm that the proposed PWM converter is the lighting equipments for LED drive which can alternate the existing 60W class incandescent bulbs and it has the high drive performance of the efficiency 80% and over, the power factor 0.95 and over under the normal voltage 220V. Finally, total harmonic distortion(THD) is gratified with a standard[1] of the lighting equipments and the durability is evaluated as the high reliablilty of 150,000 hours and over.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.