• Title/Summary/Keyword: Low temperature transfer method

Search Result 183, Processing Time 0.026 seconds

Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

  • Chung, Yoon Do;Yim, Seong Woo;Hwang, Si Dole
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

A Study on Technology Transfer of Bokto Seeding Method for Crop Production - Based on Theory of Asian and Pacific Center for Transfer of Technology(APCTT) - (복토직파재배기술의 수용과 기술 확산에 관한 연구 - 아시아태평양기술이전센터(APCTT) 이론을 중심으로 -)

  • Ahn, D.H.;Park, K.H.;Kang, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • This research was conducted to develop a technology transfer and farmer's extension of newly released technology of Bokto seeding method for crop and vegetable production based on the theory of Asian and Pacific Center for Transfer of Technology(APCTT). This technology has recently transferred to not only Korea but also other countries like North Korea, China, Japan, Taiwan, Russia and Africa(Cameroon, Sudan and South Africa) since 2005. It has known as a highly reduction of production cost in terms of labors, chemical fertilizer and pesticides as well as environmental friendly due to a deep and side banded placement of chemical fertilizer at basal application. In addition this technology was proven to a precision farming on sowing depth and mechanism of chemical application method and also highly resistant against disasters like typhoon, flooding, low temperature, drought and lodging due to silicate application. It has improved a constraints such as a poor seedling establishment, weed occurrence, lodging, low yield and poor grain and eating quality in the previous direct seeding methods but still have a problem in occurrence of weedy rice and ununiformed operation of wet or flooded soil condition. Also this technology has a limit in marketing and A/S system. Based on a theory of APCTT evaluation and analysis this technology may be more concentrated on establishment of a special cooperation team among researcher and scientists, extension workers, industry sections and governmental sectors in order to rapidly transfer this technology to farmer's field. Also there will be needed to operate a web site for this newly released technology to inform and exchange an idea, experiences and newly improved information. A feed back system might be operated in this technology as well to improve a technology under way on users' operation. Also user's manual will be internationally released and provided for farmer's instruction and training at field site.

Heat transfer monitoring between quenched high-temperature superconducting coated conductors and liquid nitrogen

  • Rubeli, Thomas;Colangelo, Daniele;Dutoit, Bertrand;Vojenciak, Michal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.10-13
    • /
    • 2015
  • High-temperature superconducting coated conductors (HTS-CCs) are good candidates for resistive superconducting fault current limiter (RSFCL) applications. However, the high current density they can carry and their low thermal diffusivity expose them to the risk of thermal instability. In order to find the best compromise between stability and cost, it is important to study the heat transfer between HTS-CCs and the liquid nitrogen ($LN_2$) bath. This paper presents an experimental method to monitor in real-time the temperature of a quenched HTS-CC during a current pulse. The current and the associated voltage are measured, giving a precise knowledge of the amount of energy dissipated in the tape. These values are compared with an adiabatic numerical thermal model which takes into account heat capacity temperature dependence of the stabilizer and substrate. The result is a precise estimation of the heat transfer to the liquid nitrogen bath at each time step. Measurements were taken on a bare tape and have been repeated using increasing $Kapton^{(R)}$ insulation layers. The different heat exchange regimes can be clearly identified. This experimental method enables us to characterize the recooling process after a quench. Finally, suggestions are done to reduce the temperature increase of the tape, at a rated current and given limitation time, using different thermal insulation thicknesses.

The Model and Experiment for Heat Transfer Characteristics of Nanoporous Silica Aerogel

  • Mingliang, Zheng
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.155-159
    • /
    • 2020
  • Nanoporous silica aerogel insulation material is both lightweight and efficient; it has important value in the fields of aerospace, petrochemicals, electric metallurgy, shipbuilding, precision instruments, and so on. A theoretical calculation model and experimental measurement of equivalent thermal conductivity for nanoporous silica aerogel insulation material are introduced in this paper. The heat transfer characteristics and thermal insulation principle of aerogel nano are analyzed. The methods of SiO2 aerogel production are compared. The pressure range of SiO2 aerogel is 1Pa-atmospheric pressure; the temperature range is room temperature-900K. The pore diameter range of particle SiO2 aerogel is about 5 to 100 nm, and the average pore diameter range of about 20 ~ 40 nm. These results show that experimental measurements are in good agreement with theoretical calculation values. For nanoporous silica aerogel insulation material, the heat transfer calculation method suitable for nanotechnology can precisely calculate the equivalent thermal conductivity of aerogel nano insulation materials. The network structure is the reason why the thermal conductivity of the aerogel is very low. Heat transfer of materials is mainly realized by convection, radiation, and heat transfer. Therefore, the thermal conductivity of the heat transfer path in aerogel can be reduced by nanotechnology.

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

Heat Transfer Analysis of Ice Slurry Generator (아이스슬러리 제빙장치의 열전달 해석)

  • Shin, You-Hwan;Lee, Yoon-Pyo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.984-989
    • /
    • 2009
  • The present study has been conducted to predict the temperature distribution in the core of the scraper type ice generator. The analytic model was simplified as the flow in the annular type cylinder, which had an inside wall moving in axial direction due to the rotation of screw and a fixed outside wall. The governing equations were arranged by the method of separation of variables. The results corresponded to the exact solutions of the Bessel function. The qualitative results such as general characteristics of heat transfer in annulus flow from outer cylinder wall to the inside wall were obtained. However the amount of the heat transfer was underestimated as low as $1/5{\sim}1/6$ of the designed value.

  • PDF

Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference (수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석)

  • Han, Seung-Baek;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.249-252
    • /
    • 2008
  • In recent large-scale structures, as mass concrete type structure is frequently applied to the building, temperature crack due to hydration heat needs to be considered. Since a volume change is internally or externally restricted in a mold after placing concrete, temperature crack of mass concrete takes place. By this reason, the reduction method to control this crack is required. In this study, low heat mixture and hydration heat difference is used to execute the analysis of hydration heat, considering the changes of heat transfer coefficient according to curing conditions and block placement of mass concrete. For the analytical modelling, original portland cement and concrete of low heat mixture are placed in the upper and lower payer, respectively. A convection boundary condition is fixed because mass concrete of block placement is characterized by the difference of mold form and curing condition. Through the analysis results considering the changes of low heat mixture, block placement, and heat transfer coefficient, we check out the temperature and stress distribution and analyze the temperature crack reduction effect.

  • PDF

Synthesis of Graphene by Plasma Enhanced Chemical Vapor Deposition and Its transfer for Device Application

  • Seo, Dong-Ik;Han, Jeong-Yun;Kim, Eon-Jeong;Park, Wan-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.277-277
    • /
    • 2010
  • In this report, we present a very effective growing method of graphene using plasma enhanced chemical vapor deposition(PECVD). The graphene is successfully grown on copper substrate. Low temperature growing is obtained with methane and hydrogen plasma. The graphene layers are analyzed by Raman spectroscopy and atomic force microscope. We also provide a transfer technique of graphene layer onto silicon substrate to build up various kinds of application devices.

  • PDF

Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube (수평미세관내 NH3 비등열전달 특성)

  • Choi, Kwang-Il;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • This paper is presented an experimental study of flow boiling heat transfer characteristics of ammonia, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal small tube with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method is applied for supplying heat to the refrigerant, where the test tube is uniformly heated by electric current. The local heat transfer coefficients were obtained over a heat flux range of 20 to $80kW/m^2$, a mass flux range of 50 to $500kg/m^2s$, a saturation temperature range of 0 to $10^{\circ}C$, and quality up to 1.0. The pressure drops increase with increasing mass flux and heat flux, and with decreasing saturation temperature. The heat transfer coefficients increase with increasing mass flux and saturation temperature in middle and high quality region. And the local heat transfer coefficient increase with increasing heat flux in low quality region. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. A new boiling heat transfer coefficient correlation based on the superposition model for ammonia in small tubes is developed average deviation of -0.17% and mean deviation of 10.85%.

Boiling Heat Transfer Characteristics of R-290 in Horizontal Smooth Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.906-914
    • /
    • 2006
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of R-290. Pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel were obtained with inner tube diameter of 3.0 mm and length of 2,000 mm. The direct electric heating method was applied for supplying a heat to the refrigerant uniformly. The experiments were conducted with R-290 purity of 99.99%, at saturation temperature of 0 to $10^{\circ}C$, a mass flux range of $50{\sim}250kg/m^2s$, and a heat flux range of $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increased with increasing mass flux and saturation temperature, wherein the effect of mass flux was higher than that of the saturation temperature. Heat flux has a low effect on the increasing of heat transfer coefficient. The heat transfer coefficient was compared with six existing heat transfer coefficient correlations. The Zhang et al.'s correlation (2004) gave the best prediction of heat transfer coefficient. A new correlation to predict the two-phase flow heat transfer coefficient was developed based on the Chen correlation. The new correlation predicted the experimental data well with a mean deviation of 11.78% and average deviation of -0.07%.