• Title/Summary/Keyword: Low temperature phase

Search Result 1,749, Processing Time 0.03 seconds

Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products (식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성)

  • Song, Hyun-Kap;Ro, Jeong-Geun;Moon, Young-Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.

Investigation of PEG(polyethyleneglycol) Removal Mechanism during UV/O2 Gas Phase Cleaning for Silicon Technology (UV/O2 가스상 세정을 이용한 실리콘 웨이퍼상의 PEG 반응기구의 관찰)

  • Kwon, Sung-Ku;Kim, Do-Hyun;Kim, Ki-Dong;Lee, Seung-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.985-993
    • /
    • 2006
  • An experiment to find out the removal mechanism of PEG(polyethyleneglycol) by using UV-enhanced $O_2$ GPC (gas phase cleaning) at low substrate temperature below $200^{\circ}C$ was executed under various process conditions, such as substrate temperature, UV exposure, and $O_2$ gas. The possibility of using $UV/O_2$ GPC as a low-temperature in-situ cleaning tool for organic removal was confirmed by the removal of a PEG film with a thickness of about 200 nm within 150 sec at a substrate temperature of $200^{\circ}C$. Synergistic effects by combining photo-dissociation and photo oxidation can only remove the entire PEG film without residues within experimental splits. In $UV/O_2$ GPC with substrate temperatures higher than the glass transition temperature, the substantial increase in the PEG removal rate can be explained by surface-wave formation. The photo-dissociation of PEG film by UV exposure results in the formation of end aldehyde by dissociation of back-bone chain and direct decomposition of light molecules. The role of oxygen is forming peroxide radicals and/or terminating the dis-proportionation reaction by forming peroxide.

Preparation and Characterization of Fine $TiO_2$ Powders by Vapor-Phase Hydrolysis of TiCl4 (사염화티타늄의 기상가수분해반응에 의한 $TiO_2$ 미분의 제조 및 입자특성)

  • 염선민;김광호;신동원;박찬경
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.525-532
    • /
    • 1992
  • TiO2 fine powder was synthesized in the gas phase by chemical vapor deposition using hydrolysis of TiCl4. Content of rutile phase in the powder was investigated. Powder characteristics such as size, crystallinity and morphology were also studied by means of TEM, SEM and XRD. Rutile phase in TiO2 powder started to be formed from 100$0^{\circ}C$ and the content increased with the reaction temperature and TiCl4 concentration. As the temperature increased from 80$0^{\circ}C$ to 140$0^{\circ}C$, the primary particle size increased while secondary particle size decreased. Spherical secondary particle with fine primary crystals agglomerated was produced at low temperature of 80$0^{\circ}C$ whereas the grown primary particle being final particle size was produced at higher temperature of 140$0^{\circ}C$. Other effects of TiCl4 and H2O partial pressures on particle size were also reported in this study.

  • PDF

Structural Changes in Isothermal Crystallization Processes of Synthetic Polymers Studied by Time-Resolved Measurements of Synchrotron-Sourced X-Ray Scatterings and Vibrational Spectra

  • Tashiro, Kohji;Hama, Hisakatsu
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The structural changes occurring in the isothermal crystallization processes of polyethylene (PE), poly-oxymethylene (POM), and vinylidene fluoridetrifluoroethylene (VDFTrFE) copolymer have been reviewed on the basis of our recent experimental data collected by the time-resolved measurements of synchrotron-sourced wide-angle (WAXS) and small-angle X-ray scatterings (SAXS) and infrared spectra. The temperature jump from the melt to a crystallization temperature could be measured at a cooling rate of 600-1,000 $^{\circ}C$/min, during which we collected the WAXS, SAXS, and infrared spectral data successfully at time intervals of ca. 10 sec. In the case of PE, the infrared spectral data clarified the generation of chain segments of partially disordered trans conformations immediately after the jump. These segments then became transformed into more-regular all-trans-zigzag forms, followed by the formation of an orthorhombic crystal lattice. At this stage, the generation of a stacked lamella structure having an 800-${\AA}$-long period was detected in the SAXS data. This structure was found to transfer successively to a more densely packed lamella structure having a 400-${\AA}$-long period as a result of the secondary crystallization of the amorphous region in-between the original lamellae. As for POM, the formation process of a stacked lamella structure was essentially the same as that mentioned above for PE, as evidenced from the analysis of SAXS and WAXS data. The observation of morphology-sensitive infrared bands revealed the evolution of fully extended helical chains after the generation of lamella having folded chain structures. We speculate that these extended chains exist as taut tie chains passing continuously through the neighboring lamellae. In the isothermal crystallization of VDFTrFE copolymer from the melt, a paraelectric high-temperature phase was detected at first and then it transferred into the ferroelectric low-temperature phase at a later stage. By analyzing the reflection profile of the WAXS data, the structural ordering in the high-temperature phase and the ferroelectric phase transition to the low-temperature phase of the multi-domain structure were traced successfully.

The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel (316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향)

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.

Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method (변형률분할법에 의한 12Cr 단조강의 열피로 수명예측)

  • 하정수;옹장우;고승기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

Temperature Measurement of Silicon Wafers Using Phase Estimation of Acoustic Wave (음향파의 위상 추정을 이용한 실리콘 웨이퍼의 온도 측정)

  • Joonhyuk Kang;Lee, Seokwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.493-495
    • /
    • 2003
  • Accurate temperature measurement is a key factor to implement the rapid thermal processing(RTP). A temperature estimation method using acoustic wave has been proposed to overcome the inaccuracy and contamination problem of the previous methods. The proposed method, however, may suffer from the offset and low resolution problem since it is implemented in the time domain. This paper presents a temperature estimation method using the phase detection of acoustic wave. Based on the frequency domain approach, the proposed technique increases the resolution of the measured temperature and reduces the effect of noise. We investigate the performance of the proposed method via experiments.

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF

Microwave Properties of Tunable Phase Shifter Using High Temperature Superconducting Thin Film (고온초전도 박막을 이용한 튜너블 이상기의 마이크로파 특성)

  • Kwak Min Hwan;Kim Young Tae;Moon Seong Eon;Ryu Han Cheol;Lee Su Jae;Kang Kwang Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • High temperature superconductor, $\YBa_2Cu_3O_{7-x}$ (YBCO) and ferroelectric, $\Ba_{0.1}Sr_{0.9}TiO_{3}$ (BST) multilayer thin films were deposited using on MgO(100) substrates pulsed laser deposition. The thin films exhibited only (001) peaks of YBCO and 1357 The HTS thin films demonstrated excellent zero resistance temperature of 92.5 K. We designed and fabricated HTS ferroelectric phase shifter using high frequency system simulator and standard photolithography method, respectively The HTS phase shifter shows a low insertion loss (2.97 dB) and large phase change ($\162^{circ}$) with 40 V do bias at 10 GHz. The HTS phase shifter shows 54 of figure of merit. These results can be applicable to phased anay antenna system for satellite communication services.

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.