• Title/Summary/Keyword: Low temperature desorption

Search Result 130, Processing Time 0.024 seconds

Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide(NMD) in a Fixed Bed (고정층 반응기에서 망간광석(NMD)을 이용한 저농도 일산화탄소 산화특성)

  • Lee, Young Soon;Park, Jong Soo;Oh, Kwang Joong
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.60-68
    • /
    • 1996
  • The oxidation of carbon monoxide of low concentration on the natural manganese dioxide (NMD) has been investigated in a fixed bed reactor. The experimental variables were concentration of oxygen (500ppm~99.8%) and carbon monoxide (500ppm~10000ppm) and catalyst temperature ($50{\sim}750^{\circ}C$). The NMD(Natural Manganese Dioxide) has been characterized by temperature - program reduction(TPR) using 2.4% $CO/H_2$ as a reducing agent, thermogravimetric analysis (TGA), and reduction of NMD by 2.4% $CO/H_2$. It was found that the NMD catalyst activity on the unit area was greater than the $MnO_2$ catalyst for oxidation of CO at the same temperature. The thermal stability of oxidation activity was considered to be maintained when the NMD was heated to $750^{\circ}C$. The TGA, reduction by CO, and TPR of the NMD showed that the NMD had active lattice oxygen which was easily liberated on heating in the absence and low concentration of oxygen. The reaction order in CO is 0.701 between 500~3500ppm and almost zero between 3500~10000ppm of CO.

  • PDF

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide (바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성)

  • Yun, Kyung Hee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.620-629
    • /
    • 2022
  • By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340 ℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680 ℃, the cubic lattice constant a was VN. close to the value. At 680 ℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

A Study for Separation of $CH_4$ and $CO_2$ from Biogas (바이오가스의 $CH_4$, $CO_2$의 분리방법 연구)

  • Lee, Taek-Hong;Kim, Jae-Young;Chang, Sae-Hun;Lee, Hyo-Suk;Choi, Ik-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2010
  • This paper is studying the selective separation of methane and carbon dioxide which are the main ingredients of biogas. Adsorption performance of molecular sieve 13x for carbon dioxide seems to be reasonable. In this experiments carbon dioxide contains about 3~5 ppm of methane and it is impossible to obtain high purity carbon dioxide. Applying the low temperature technique, it is possible to separate methane and carbon dioxide from bio gas. PRO II simulation shows results a small change of liquefaction temperatures and no difference with the used thermodynamic models. Applying low temperature technique, It is possible to separate carbon dioxide and methane from biogas.

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.

Measurement of the Ar Recovery Time of a Cryopump and Analysis on the Ar Instability (크라이오펌프 알곤 회복시간 측정과 알곤 불안정성 분석)

  • In, Sang Ryul;Lee, Dong Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.225-230
    • /
    • 2013
  • Cryopump removes gas molecules by condensation and adsorption. Therefore, cryo-surface temperature and corresponding vapor pressure influence directly the pumping performance. If the surface temperature of any part is neither low nor high, there occurs the desorption of gas molecules condensed or adsorbed, and the emitted molecules can be captured again, which leads to a time-consuming and fluctuating change of the pressure. Though every gas can show such a pressure instability at a specified temperature range, the instability generated in a sputter system using Ar as a working gas and operating with a cryopump is especially undesirable. In this paper the cause of the argon instability is analyzed and corrective is provided through the measurement of the Ar recovery time.

A Study on the Magnetic Properties of the Sm2Fe17Nx-type Material Produced by a Combination of HDDR Process and Nitrogenation

  • Pan, Y.R;Kwon, H.W
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.99-104
    • /
    • 1998
  • The $ Sm_2Fe_{17}N_x $materials were prepared by the combination consisting of the HDDR (hydrogenation, disproportionation, desorption, and recombination) process and nitrogenation or by the conventional way consisting of nitrogenation only, and the magnetic and thermomagnetic properties of the materials were investigated. The magnetic characterisation of the prepared $ Sm_2Fe_{17}N_x $ materials was performed using a VSM. Thermal stability of the materials was evaluated using a DTA under Ar gas atmosphere. The thermomagnetic characteristics of the materials were examined using a Sucksmith-type balance. The previously HDDR-treated Sm2Fe17parent alloy was found to be nitrogenated more easily compared to the ordinary $ Sm_2Fe_{17}N_x $alloy. The $ Sm_2Fe_{17}N_x $ material produced by the combination method showed a high coercivity (12.9 kOe) even in the state of coarse particle size (around 60 ${\mu}{\textrm}{m}$). It was also revealed that the $ Sm_2Fe_{17}N_x $ material produced by the material produced by the combination showed an unusual TMA tracing featured with a low and constant magnetisation at lower temperature range and a peak just before the Curie temperature. This thermomagnetic characteristic was interpreted in terms of the competition between two counteracting effects; the decrease in magnetisation due to the thermal agitation at an elevated temperature and the increase in magnetisation resulting from the rotation of magnetisation of the fine grains comparable to a critical single domain size due to the decreased magnetocrystalline anisotropy at an elevated temperature.

  • PDF

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries (저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향)

  • Whang, Tae Kyung;Kim, Ji Hong;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.

Adsorption and Storage of Natural Gas by Nanoporous Adsorbents (나노세공체 흡착제에 의한 천연가스의 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.117-125
    • /
    • 2009
  • In order to utilize natural gas (NG), one of the clean energy sources in next-generation, as a fuel for vehicles, it is important to store natural gas with high density. To store NG by adsorption (ANG) at room temperature and at relatively low pressure(35~40 atm) is safe and economical compared with compressed NG and liquefied NG. However, so far no adsorbent is reported to have adsorption capacity suitable for commercial applications. Nanoporous materials including metal-organic frameworks can be potential adsorbents for ANG. In this review, physicochemical properties of adsorbents necessary for high adsorption capacity are summarized. Wide surface area, large micropore volume, suitable pore size and high density are necessary for high energy density. Moreover, low adsorption-desorption energy, rapid adsorption-desorption kinetics and high delivery are needed. Recently, various efforts have been reported to utilize nanoporous materials in ANG, and it is expected to develop a nanoporous material suitable for ANG.

Properties of Au Clusters Supported on $TiO_2$ Studied by XPS, ISS, AES, and TPD (XPS, ISS, AES, TPD를 이용한 $TiO_2$ 위에 지지된 Au 클러스터의 특성 연구)

  • Kim, Dae Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.607-617
    • /
    • 1998
  • Au was dosed on $TiO_2(001)$ film grown epitaxially on Mo(100) surface in about 90 ${\AA}$ thickness. The growth mode of Au, thermal behavior and stability of the Au clusters, and the binding energy shift of Au 4f with the change in the amount of Au loading were studied by Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) spectroscopy, Ion Scattering Spectroscopy (ISS), and X-ray Photoelectron Spectroscopy (XPS). Au grows three dimensionally on $TiO_2(001)$ film and the average size of Au clusters prepared at low temperature is smaller than those at higher temperature and the size increases with temperature irreversibly. Au clusters on $TiO_2(001)/Mo(100)$ start evaporation at 1000 K. TPD spectra of Au show very asymmetric peaks with the same leading edges irrespective of the amount of Au loading. The temperature at the peak maximum increases with the amount of Au. The desorption energy of Au obtained from the leading edge analysis of the TPD spectra is about 50 kcal/mol. The initial sticking coefficient of Au on $TiO_2(001)$ is constant in the temperature range of 200-600 K. The binding energy of Au 4f for the Au loaded on the film less than 2.0 MLE shifts to higher energy compared with the bulk Au. The shift is +0.3 eV at 0.1 MLE Au amount.

  • PDF

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.