• Title/Summary/Keyword: Low temperature bonding

Search Result 303, Processing Time 0.029 seconds

Realization of gas sensor using LTCC(Low Temperature Cofired Ceramic) technology (LTCC 기술을 이용한 가스센서 구현)

  • Jeon, J.I.;Choi, H.J.;Lee, Y.B.;Kim, K.S.;Park, J.H.;Kim, M.Y.;Im, C.I.;Mun, J.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.369-370
    • /
    • 2005
  • LTCC (Low Temperature Cofired Ceramic) technology is one of technologies which can realize SIP (System-In-a-Package). In this paper realization of gas sensor using LTCC technology was described. In the conventional gas sensor structure, wire bonding method is generally used as an interconnection method whereas in the LTCC sensor structure, via was used for the interconnection. As sensing materials, $SnO_2$ was adopted. The effect of frit glass portion on the adhesion of the sensing material to the LTCC substrate and the electrical conductivity of the sensing material were analyzed. AgPd, PdO, Pt was added to the sensing material as an additive for improving the gas sensitivity and electrical conductivity and the effect of the amount of additives in the sensing material on the electrical conductivity was investigated. The effect of the amount of frit glass in the termination on the sensor performance, especially mechanical integrity, was considered and the crack initiation and propagation in the boundary between the sensing material and the termination was studied.

  • PDF

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF

Synthesis of Si-Al Carbonates from Kaolin and Sintering Characteristics by Reaction Bonding Si3N4 (카올린으로부터 Si-Al 탄화물의 합성 및 Si$_3$N$_4$ 결합 소결 특성)

  • Baik, Yong-Hyuck;Kim, Young-ku;Han, Chang;Kwon, Yang-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.667-674
    • /
    • 1991
  • In this study, Kaolin was carbonized at 1300~175$0^{\circ}C$ and its constituent mineral change was investigated. Carbonized kaolin at 1$650^{\circ}C$ was mixed with metallic silicon, formed and nitrified at 135$0^{\circ}C$ in N2-NH3 atmosphere. Properties of this product such as porosity, bulk density, MOR, nitrization rate and oxidation resistence were measured, and its mineralogical changes were investigated by XRD. The results were as follows; 1) $\beta$-SiC was initially synthesized at 150$0^{\circ}C$, and its amount was continuously increased with reaction temperature to 1$700^{\circ}C$. 2) At 1$600^{\circ}C$, mullite was rapidly decomposed and the amounts of $\beta$-SiC and $\alpha$-Al2O3 were increased simultaneously. 3) By adding alkali to kaolin, the decomposition temperature of mullite was dropped approximately 10$0^{\circ}C$, but the amount of $\alpha$-SiC was increased. 4) The highest values of their nitrization rate and MOR were obtained at the specimen of 35 wt% metallic silicon in nitrization reaction. 5) It seems that increment of $\alpha$-Si3N4 and $\alpha$-Al2O3 phase during nitrization was due to the decomposition of Al4SiC4 existed in carbonized kaolin. 6) Si3N4 bonded SiC-Al2O3 composite were fabricated from kaolin at relatively low temperature (135$0^{\circ}C$).

  • PDF

The effect of calcium concentration and temperature on the gelation of Aigeok Polysaccharide (Aigeok polysaccharide의 겔화에 미치는 칼슘농도와 온도의 효과)

  • Lee, Hyang-Aee;Kim, Keyng-Yi
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • The influence of temperature and calcium concentration on the gelation kinetics of purified Aigeok system has been investigated by small deformation oscillatory measurement. DE(degree of esterification) of the present sample was indicated of low methoxyl Aigeok polysaccharide by FT-IR. The calcium induced gelation of Aigeok has been studied. Both moduli reached the saturation value during the period of experiments. Rate constant increased with increasing calcium concentration, however above 4.08 mM calcium chloride caused a sudden drop in gel strength. The experimental result that the decrease in gel strength at high calcium concentration was seems to be phase separation or competitive inhibition between calcium ions. The storage and loss shear moduli decreased with increasing temperature. The rate constant of Aigeok system remarkably dropped above $35^{\circ}C$. Thus hydrogen bonding is prior to hydrophobic interaction for Aigeok molecule.

  • PDF

Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED (백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향)

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Study on Rheological Characterization of Polyacrylonitrile/Dimethyl Sulfoxide Solution with Change of Storage Times and Temperatures (시간 및 온도변화에 따른 폴리아크릴로니트릴/디메틸술폭시드 중합체 용액의 유변학적 특성 연구)

  • Yang, Jae-Yeon;Lee, Byoung-Min;Kuk, Yun-Su;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • In this study, the structural and rheological characterizations of polyacrylonitrile(PAN)/dimethyl sulfoxide(DMSO) solutions for PAN fiber were investigated according to the change of storage times and temperatures. As a result, PAN/DMSO solutions exhibited a very characteristic rheological behavior with variation of temperature. The solutions showed an increase of complex viscosity and a decrease of loss tangent($tan{\delta}$) as temperature was increased over the temperature range of 40 and $70^{\circ}C$ and it could be seen that the viscosity rapidly increased at low frequency. These results indicated that the gel polymer and denser gel structure were formed due to the intermolecular hydrogen bonding of water in the polymer solution depending on the storage time.

Effect of Deposition Temperature on the Characteristics of Low Dielectric Fluorinated Amorphous Carbon Thin Films (증착온도가 저유전 a-C:F 박막의 특성에 미치는 영향)

  • Park, Jeong-Won;Yang, Sung-Hoon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1211-1215
    • /
    • 1999
  • Fluorinated amorphous carbon (a-C:F) films were prepared by an electron cyclotron resonance chemical vapor deposition (ECRCVD) system using a gas mixture of $C_2F_6$ and $CH_4$ over a range of deposition temperature (room temperature ~ 300$^{\circ}C$). 500$^{\AA}C$ thick DLC films were pre-deposited on Si substrate to improve the strength between substrate and a-C:F film. The chemical bonding structure, chemical composition, surface roughness and dielectric constant of a-C:F films deposited by varying the deposition temperature were studied with a variety of techniques, such as Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), atomic force microscopy (AFM) and capacitance-voltage(C-V) measurement. Both deposition rate and fluorine content decreased linearly with increasing deposition temperature. As the deposition temperature increased from room temperature to 300$^{\circ}C$, the fluorine concentration decreased from 53.9at.% down to 41.0at.%. The dielectric constant increased from 2.45 to 2.71 with increasing the deposition temperature from room temperature to 300$^{\circ}C$. The film shrinkage was reduced with increasing deposition temperature. This results ascribed by the increased crosslinking in the films at the higher deposition temperature.

  • PDF