• Title/Summary/Keyword: Low switching energy

Search Result 250, Processing Time 0.022 seconds

High Performance and Low Cost Single Switch Energy Recovery Display Driver for AC Plasma Display Panel

  • Han Sang Kyoo;Moon Gun-Woo;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.723-727
    • /
    • 2004
  • A new high-performance and low cost single switch energy recovery display driver for an AC plasma display panel (PDP) is proposed. Since it is composed of only one auxiliary power switch, two small inductors, and eight diodes compared with the conventional circuit consisting of four auxiliary power switches, two small inductors, eight power diodes, and two external capacitors, it features a much simpler structure and lower cost. Nevertheless, since the rootmean-square (RMS) value of the inductor current is very small, it also has very desirable advantages such as n low conduction loss and high efficiency. Furthermore, there are no serious voltage-drops caused by the large gas-discharge current with the aid of the discharge current compensation, which can also greatly reduce the current flowing through power switches and maintain the panel to light at n lower sustaining voltage. In addition, all main power switches are turned on under the zero-voltage switching (ZVS) and thus, the proposed circuit has a improved EMI, increased reliability, and high efficiency. Therefore, the proposed circuit will be well suited to the wall hanging PDP TV. To confirm the validity of the proposed circuit, circuit operations, features,and design considerations are presented and verified experimentally on a 6-inch PDP, 50kHz-switching frequency, and sustaining voltage 141V based prototype.

  • PDF

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

Plasma Generation Method using PWM Control for Ash Process (반도체 Ash 공정용 PWM 제어 Plasma 발생방법)

  • Lee Joung-Ho;Choi Dae-Kyu;Choi Sang-Don;Lee Byoung-Kuk;Won Chung-Yuen;Kim Soo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.470-474
    • /
    • 2006
  • This dissertation discuses about a ferrite core plasma source using low operating frequency without sputtering problem by the stored electric field. Compared with the conventional RF power system with 13.56MHz switching frequency, the proposed plasma power system is only separated at 400kHz, so that it makes possible to use of low cost switching elements, PWM control and soft switching. Moreover, it could improve the coupling efficiency for plasma and antenna by using the ferrite core in order to transfer the energy of the load This dissertation tried to analyze new plasma generation method for the plasma generation system by modeling the plasma load and grafting the concept of impedance matching in order to interpret it with the formula This dissertation verified the ferrite core inductive coupling plasma source authorized for 400kHz of low frequency power by applying to the semi-conductor ash process thru the measurement of ash capacity and uniformed plasma distribution on the actual wafer.

  • PDF

A Study on Switching Characteristics of 1,200V Trench Gate Field stop IGBT Process Variables (1,200V 급 Trench Gate Field stop IGBT 공정변수에 따른 스위칭 특성 연구)

  • Jo, Chang Hyeon;Kim, Dea Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.350-355
    • /
    • 2021
  • IGBT is a power semiconductor device that contains both MOSFET and BJT structures, and it has fast switching speed of MOSFET, high breakdown voltage and high current of BJT characteristics. IGBT is a device that targets the requirements of an ideal power semiconductor device with high breakdown voltage, low VCE-SAT, fast switching speed and high reliability. In this paper, we analyzed Gate oxide thickness, Trench Gate Width, and P+Emitter width, which are the top process parameters of 1,200V Trench Gate Field Stop IGBT, and suggested the optimized top process parameters. Using the Synopsys T-CAD Simulator, we designed IGBT devices with electrical characteristics that has breakdown voltage of 1,470 V, VCE-SAT 2.17 V, Eon 0.361 mJ and Eoff 1.152 mJ.

DC-DC Converter for Low-Power Power Management IC (저-전력 전력 관리 회로를 위한 DC-DC 변환기)

  • Jeon, Hyeondeok;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.174-179
    • /
    • 2018
  • In this paper, design of high-efficiency DC-DC converter is presented for low-power PMIC (power management integrated circuit). As PMIC technologies for IoT and wearable devices have been continuously improved, high-efficiency energy harvesting schemes should be essential. Since the supply voltage resulting from energy harvesting is low and widely variable, design techniques to achieve high efficiency over a wide input voltage range are required. To obtain a constant switching frequency for wide input voltage range, frequency compensation circuit using supply-voltage variation sensing circuit is included. In order to obtain high efficiency performance at very low-power condition, accurate burst-mode control circuit was adopted to control switching operations. In the proposed DC-DC buck converter, output voltage is set to be 0.9V at the input voltage of 0.95~3.3V and maximum measured efficiency is up to 78% for the load current of 180uA.

A Performance Study on Silica Gel Adsorption Desalination System Utilizing Low Temperature Heat Sources (저온 활용을 위한 실리카겔 흡착식 담수화시스템의 성능연구)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • This work introduces a simple one-reactor adsorption desalination system that harnesses low temperature heat sources (solar energy, waste heat), which has been experimentally studied to elicit the most suitable design parameters and operating conditions. The design process of the system was divided into three parts to reflect the operating principle of desalination technology with application of adsorption processes. First, the evaporator for the vaporization of saline water was designed, then the reactor for the adsorption and release of the steam, followed by the condenser for condensation of the fresh water. The specific water yield is measured experimentally with respect to the time while controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. The present system well demonstrates the applicability of silica gel in relation to adsorption technologies that utilize low temperature heat sources ranging from 60 to $80^{\circ}C$, such as solar energy and waste heat.

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

A Single-phase High Power Factor Rectifier With Low Energy Storage Using Active Filter (능동필터를 이용한 저(低)에너지 축적 단상 고역률 정류기)

  • Yun, In-Geun;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.135-137
    • /
    • 1994
  • It this paper, a single-phase high power factor rectifier with low-enery requirements for filtering elements is proposed. By switching control, the current containing the 3rd-hamonic component is to flow into the rectifier. Properly selecting the amplitude of the 3rd-hamonic component, it is possible to reduce the stored energy in the rectifier. Boost converter is used for power-factor control while active filter absorbs the 3rd-hamonic component. Simulation results are presented to show low stored energy of the proposed rectifier.

  • PDF

Design and Fabrication of Wide-band Transient Voltage Blocking Device (광대역 과도전압 차단장치의 설계 및 제작)

  • 송재용;이종혁;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.330-334
    • /
    • 1999
  • This paper presents a new transient voltage blocking device (TBD) for commucation facilities with low power and high frequency bandwidth. Conventional protection devices have some problems such as low frequency bandwidth, low energy capacity and high remnant voltage. In order to improve these limitations, the new TBD, which consists of a gas tube, avalanche diodes and junction type field effect transistors (JFETs), was designed and fabricated JFETs were used as an active non-linear element and a high speed switching diode with low capacitance limits high current. Therefore the avalanche diodes with low energy capacity are protected from the high current, and the TBD has a very small input capacitance. From the performance test using surge generator, which can produce 1.2/50${\mu}\textrm{s}$ 4.2 k$V_{max}$, 8/20${\mu}\textrm{s}$ 2.1 kA$\sub$max/, it is confirmed that the proposed TBD has an excellent protection performance in tight clamping voltage and limiting current characteristics.

  • PDF

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.