• Title/Summary/Keyword: Low switching energy

Search Result 250, Processing Time 0.026 seconds

A Noval High Efficiency Grid Connected 1kW PCS for Fuel Cell (새로운 고효율 계통연계 1kW 연료전지용 PCS)

  • Kim, Tae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.417-422
    • /
    • 2008
  • In this paper, a novel DC/DC low-voltage high-current converter circuit is proposed to improve the efficiency of power converter used in the grid-connected fuel-cell generator system. We proposed a novel high efficiency grid-connected power conditioning system for RPG fuel cell. On the result of that, the loss of system was decreased rapidly by driving stack within the condition of maximum efficiency. The peak currents of the current-type inductor and the transformer's coil are reduced by synchronizing switching frequency of Buck-type converter is increased twice as the Push-Pull converter's switching frequency. The novel structure of DC/DC converter is able to realize ZVS-ZCS in fuel-cell system is proposed. The proposed switching component of Push-Pull converter has the ZVS and ZCS function by using the circuit of new passive clamp.

Boost $1\Psi$ converter of high efficiency by partial resonant switching using lossless snubber (무손실 스너버를 이용한 부분공진 스위칭에 의한 고효율 승압형 단상 컨버터)

  • 서기영;곽동걸;전중함;이현우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.315-322
    • /
    • 1998
  • Power conversion system must increase switching frequency in order to achieve small size, light weight and low noise. However, the switches of converter are subject to high switching power losses and switching stresses. As a result, the power system has a lower efficiency. In this paper, the authors propose an AC-DC boost converter of high efficiency by partial resonant switching mode. The switching devices in the proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Besides, by regenerating energy, that is charged in a loss less snubber condenser of a snubber adopted to a common circuit, toward an input source part, this circuit can get increased efficiency. as merit. The result is that the switching loss is very low, the efficiency and power factor of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Scenario Analysis of Low-Carbon Generation Mix Considering Social Costs (사회적 비용을 고려한 저탄소 전원구성의 시나리오 분석)

  • Park, Jong-Bae;Cho, Young-Tak;Roh, Jae Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • This study organizes scenarios on the power supply and demand plans considering the uncertainties and the portion of distributed energy resources. In analysing the scenarios, it estimates total electricity supply cost in the social aspect, natural gas demand and air pollutants emission including carbon dioxide. Also the analysis is performed to estimate the marginal cost of carbon dioxide reduction for the fuel switching from coal to liquified natural gas. In result, the social cost could be decreased by replacing some portion of renewable energy by LNG-based combined heat and power and delaying the construction of large base-load generators such as coal and nuclear plants. The marginal carbon dioxide reduction cost by fuel switching is in plausible range for fuel switching to be an option for carbon dioxide emission reduction when the social cost is considered.

ESP by using Half-bridge ZCS resonant inverter and Cockroft-Walton circuit (Half-Bridge ZCS resonant inverter 및 Cockroft-Walton회로를 사용한 공기 청정기에 관한 연구)

  • Park, Jong-Woong;Jeong, Jong-Jin;Chung, Hyun-Ju;Joung, Jong-Han;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1951-1953
    • /
    • 2004
  • In this study, we propose a small high voltage power supply which use a half-bridge ZCS resonant and Cockroft-Walton on circuit, for ESP (Electrostatic Precipitator). This power supply transfers energy from ZCS resonant inverter to step-up transformer and the transformer secondary is applied to the Cockroft-Walton circuit for generating high voltage as discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50 % in this ESP.

  • PDF

Integrated Bidirectional Three-Port DC-DC Converter with Ripple-Free Input Current and Soft Switching

  • KhademiAstaneh, Parastou;Javidan, Javad;Valipour, Khalil;Akbarimajd, Adel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1293-1302
    • /
    • 2018
  • Multiport power converters have recently become popular to researchers and engineers. However, more improvements are required in terms of their soft-switching operation, bidirectional operation, and integration. In this study, a bidirectional three-port three-switch DC-DC converter is proposed. The converter contains a low-current ripple port and ripple-free current port. Through the integrated structure, utilization of a coupled inductor, and a new switching strategy, the aforementioned specifications are achieved. A modified switching strategy is also utilized in the converter, which has resulted in the bidirectional operation of the converter between ports. Finally, a comprehensive analysis is presented, and the converter characteristics are validated by experimental results.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

A new low-cost energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 저가형 에너지 회수 회로)

  • Kim Tae-Sung;Choi Seong-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.68-70
    • /
    • 2006
  • A new low-cost energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. It has two auxiliary switches clamped on a half sustain voltage, and inductor currents are built up before the PDP is charged and -discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

  • PDF

A new low-cost asymmetric current-fed energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 저가형 비대칭 전류 주입 에너지 회수 회로)

  • Kim Tae-Sung;Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.78-80
    • /
    • 2006
  • A new low-cost asymmetric current-fed energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. LC resonant circuit biased by $V_s/2$ and composed of single switch is used as ERC on both sides of the PDP, slow discharging and fast charging times can be employed, and inductor currents are built up before the PDP is charged and discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

  • PDF

Optimal Soft-Switching Scheme for Bidirectional DC-DC Converters with Auxiliary Circuit

  • Lee, Han Rim;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.681-693
    • /
    • 2018
  • This paper proposes a soft-switching bidirectional dc-dc converter (BDC) with an auxiliary circuit. The proposed BDC can achieve the zero-voltage switching (ZVS) using an auxiliary circuit in the buck and boost operations. The auxiliary circuit supplies optimal energy for the ZVS operation of the main switches. The auxiliary circuit consists of a resonant inductor, a back-to-back switch and two capacitors. A small-sized resonant inductor and an auxiliary switch with a low-rated voltage can be used in the auxiliary circuit. Zero-current switching (ZCS) turn-on and turn-off of the auxiliary switches are possible. The proposed soft-switching scheme has a look-up table for optimal switching of the auxiliary switches. The proposed strategy properly adjusts the turn-on time of the auxiliary switch according to the load current. The proposed BDC is verified by the results of PSIM simulations and experiments on a 3-kW ZVS BDC system.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.