• Title/Summary/Keyword: Low speed range

Search Result 748, Processing Time 0.03 seconds

Performance Characteristic of a Pipe Type Centrifugal Pump (파이프형 원심펌프의 성능특성에 관한 실험적 연구)

  • Yu, HyeonJu;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.32-36
    • /
    • 2012
  • The positive displacement pump and the regenerative pump are widely used in the range of low specific speed, $n_s{\leq}100$[rpm, m3/min, m]. The positive displacement pump is not suitable for miniaturization and operation in high rotational speed. The regenerative pump has a problem with large leakage flow and low efficiency. While the centrifugal pump has advantages of high efficiency, miniaturization and high rotational speed, efficiency drops sharply with decrease in specific speed. Therefore the purpose of this study is to design a new type of centrifugal pump that has advantages of centrifugal pumps in operation in low specific speed. The name of this new type of pump was called 'Pipe type centrifugal pump', since the flow path through the impeller is simple circular pipe. Due to the simple shape of impeller, the manufacturing process is simple and cost is low. There is strong jet flow at the outlet of the impeller. This jet induces flow path loss, meridional dynamic pressure loss and mixing loss. Large disk friction makes the efficiency be limitted in the range of low specific speed. Even though the loss and the low efficiency, 'Pipe type centrifugal pump' represents stable performance, affordable pressure ratio and efficiency better than that of other low specific speed pumps.

Accurate Position and Instantaneous Speed Observer for Motor Drive System using Novel Speed Estimator (속도 추정기를 이용한 전동기 구동 시스템의 정밀한 위치 및 순시 속도 관측기의 개발)

  • Kim, Hui-Uk;Kim, Yong-Seok;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.625-631
    • /
    • 1999
  • In this paper, an accurate position control using new estimator which estimates the instantaneous speed and accurate position with a low precision shaft encoder is proposed. The overall performance of position control system is strongly depend on the accuracy of the position information and the performance of the speed controller in low speed range. In this paper the position and speed of the motor are obtained from Kalman filter which is an optimal full order estimator. This estimator has good performance even in very low speed range include standstill. The simulation and experimental results confirm the validity of the proposed estimation and control scheme.

  • PDF

Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Senjyu, Tomonobu;Yona, Atsushi;Saber, Ahmed Yousuf
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • A pulse width modulation-voltage source inverter (PWM-VSI) is used for variable speed permanent magnet synchronous motor (PMSM) drives. The PWM-VSI fed PMSM has two major disadvantages. Firstly, the PWM-VSI DC-link voltage limits the magnitude of the PMSM terminal voltage. As a result, the motor speed is restricted. Secondly, in a low speed range, the PWM-VSI modulation index declines. This is caused by a high DC-link voltage and a low terminal voltage ratio. As a result, the distortion of the voltage command and the stator current are increased. This paper proposes an optimal pulse amplitude modulation (PAM) control which can adjust the inverter DC-link voltage by using a buck-boost DC-DC converter. At a low speed range, the proposed system can reduce the distortion of the voltage command, which improves the stator current waveform. Also, the allowable speed range is extended. In order to verify the proposed method, experimental results are provided to confirm the simulation results.

Stator Flux Vector Control of Synchronous Reluctance Motor (동기형 리럭턴스 전동기의 자속 추정형 센서리스 제어)

  • AHN JOONSEON;KIM SOL;LIM JINJAE;GO SUNGCHUL;LEE JU
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.794-796
    • /
    • 2004
  • In the evaluation of performance for the algorithm of sensorless speed control, the ability of speed control in low speed range and starting is important points. First of all, stability of low speed control is highly required in the application which needs high performance in speed control. For this requirement, this paper represents simple method to estimate the rotor position by comparing reference linkage flux with it's estimation. In the estimation of linkage flux, this paper uses voltage-current model for increasing the performance of speed control in low speed range.

  • PDF

Characteristics of tool wear in cutting of glass fiber reinforced platics (GFRP) (유리섬유 강화 플라스틱 절삭에서의 공구마멸특성)

  • 이원평
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.49-56
    • /
    • 1987
  • This paper is a study on the effect of the cutting speed on the tool wear in turning of the glass fiber reinforced plastics. The wear behavior of cutting tool is studied by means of turning, changing the cutting speed and feed in the wide range. Moreover, the theoretical model applicable to the cutting speed of wide range is analysed. The main results obtained are as follows: The relation between the tool wear and the cutting speed is divided into three range in case of the constant cutting distance. 1) At the low cutting speed, the tool wear is independent of the cutting speed, but dependent mainly on the contact length between tool and glass fiber(lst range). 2) At the high cutting speed, the tool wear is independent of the contact length, and dependent on the cutting speed only(2nd range). The tool wear increases in proportion to the cutting speed. 3) At the higher cutting speed than the speed in the 2nd range, the tool wear is independent both of the cutting speed and the contact length(3rd range). 4) In the 3rd range, tool flank wear is constant and is observed that only the wear of cutting edge increases.

  • PDF

Robust Adaptive Control System for Induction Motor Drive Without Speed Sensor at Low Speed (저속영역에서 속도검출기가 없는 유도전동기의 강인성 적응제어 시스템)

  • Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.

  • PDF

Field-Oriented Speed Control of Induction Machine without Speed Sensor in Overall Speed Range (속도검출기가 없는 유도전동기의 광범위한 속도 영역에서의 자속 기준 속도 제어)

  • Ryu, Hyeong-Min;Ha, Jeong-Ik;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.338-344
    • /
    • 2000
  • This paper proposes a field-oriented control strategy without speed sensor in overall speed range. At low speed region including zero speed, the electrical saliency which is due to the main flux saturation is used in order to estimate an instantaneous flux position. This electrical saliency can be obtained from the difference of high frequency impedance by the high frequency signal injection. This method enables the stable operation at zero speed or stator frequency even under heavily loaded condition. However, because of the high frequency signal injection the loss and noise in motor increase and the voltage margin is reduced as the motor speed increases. Therefore, this algorithm must be supplemented with the algorithm based on the electrical model of motor, which is conventionally used in the region except the low speed. This paper proposes the combination algorithm between the high frequency signal infection method and the adaptive observer, in which the rotor flux and motor speed can be simultaneously estimated by the adaptive control theory. This combination algorithm enables the stable operation of field-oriented speed control without speed sensor in overall speed range. This is verified by experimental results.

  • PDF

CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed (극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구)

  • Choi, Young-Do;Son, Sung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

Minimization of Friction and Wear Damage of Marine Structures by Using the Advanced Anti-corrosive Composite Materials (첨단복합방식재를 이용한 각종 선박구조물의 마찰마모손상의 최소화)

  • 김윤해;김진우
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.15-26
    • /
    • 1999
  • The marine structures with sea water cooling system always expose to the oceanic atmosphere. Therefore, the protection of the equipments is very important. To investigate the effectiveness of advanced composite materials for the application in offshore environments, the tensile test, hardness test, undercutting property test, permeance test and the friction and wear test were carried out by using various applicable coating materials. The main results obtained can be summarized as follows; 1. The micro-hardness of the Archcoat 502B showed the highest value. 2. The coefficient of friction of the Rigspray coating at the speed of 2.21m/sec showed the lowest value, and that of the Archcoat 502B coating at 1.08m/sec and 0.18m/sec indicated the lowest values. 3. The wear mass at the speed of 0.18m/sec and 1.08m/sec in dry condition showed the smallest values. 4. The Archcoat 502B coating is fitted to the dynamic instruments in the range of low speed and middle speed. Rigspray coating is fitted to the dynamic instruments in the range of high speed. 5. The wear mass of five kinds of coating materials at the range of low speed was very small, and those of the Archcoat S02B, Archcoat 402B and Rigspray coating at high speed range were quitely smaller than those of the Modified Epoxy and Tar Epoxy.

  • PDF

A New Motor Speed Estimator using Kalman Filter in Low Speed Range (칼만 필터를 이용한 저속 영역에서의 새로운 속도 추정기)

  • Kim, Heui-Wook;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.576-578
    • /
    • 1994
  • In this. paper, a new technique to estimate both the instantaneous speed and disturbance load torque using a low precision shaft encoder in very low speed range is proposed. To detect the instantaneous speed and disturbance load torque, the Kalman filter which is an optimal full order estimator is used. Experimental results conform the validity of the proposed estimation technique. The effects of parameter variations are discussed, and it is verified that the system is robust to the modeling error.

  • PDF