• 제목/요약/키워드: Low speed

검색결과 6,526건 처리시간 0.034초

전류오차보상에 의한 직류전동기의 센서리스 속도제어 (Sensorless Speed Control of Direct Current Motor using Current Error Compensation)

  • 함형철;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.930-936
    • /
    • 2003
  • A new method of direct current motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference, the rotor approaches to the model speed, that is, reference value. The performance of direct current motor drives without speed sensor is generally poor at very low speed. However, in this system, it is possible to obtain good speed performance in the low speed range.

고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어 (Sensorless Induction Motor Vector Control Using Stator Current-based MRAC)

  • 박철우;최병태;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.

속도검출기가 없는 유도전동기의 광범위한 속도 영역에서의 자속 기준 속도 제어 (Field-Oriented Speed Control of Induction Machine without Speed Sensor in Overall Speed Range)

  • 류형민;하정익;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권5호
    • /
    • pp.338-344
    • /
    • 2000
  • This paper proposes a field-oriented control strategy without speed sensor in overall speed range. At low speed region including zero speed, the electrical saliency which is due to the main flux saturation is used in order to estimate an instantaneous flux position. This electrical saliency can be obtained from the difference of high frequency impedance by the high frequency signal injection. This method enables the stable operation at zero speed or stator frequency even under heavily loaded condition. However, because of the high frequency signal injection the loss and noise in motor increase and the voltage margin is reduced as the motor speed increases. Therefore, this algorithm must be supplemented with the algorithm based on the electrical model of motor, which is conventionally used in the region except the low speed. This paper proposes the combination algorithm between the high frequency signal infection method and the adaptive observer, in which the rotor flux and motor speed can be simultaneously estimated by the adaptive control theory. This combination algorithm enables the stable operation of field-oriented speed control without speed sensor in overall speed range. This is verified by experimental results.

  • PDF

반작용휠 속도측정방법의 오차 분석 (Error Analysis of Reaction Wheel Speed Detection Methods)

  • 오시환;이혜진;이선호;용기력
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권4호
    • /
    • pp.481-490
    • /
    • 2008
  • 반작용휠은 인공위성의 기동 및 자세제어에 사용되는 주요 구동기 중의 하나로 회전체의 속도를 변화시켜 발생하는 토크로 위성의 자세제어를 수행하므로 정밀한 자세제어를 위해서는 정확한 회전속도의 측정이 요구된다. 타코 펄스를 이용한 고속 회전모터의 대표적인 속도 측정방법에는 Elapsed-time측정방법과 Pulse-count측정방법의 두 가지가 있으며 이 연구에서는 반작용휠의 속도 측정을 하는 동안 발생할 수 있는 속도 측정의 오차 및 정밀도를 두 가지 방법에 대해 분석, 비교하였다. 그 결과 Pulse-count측정방법은 반작용휠의 등속 구동 시 회전속도에 상관없는 일정한 오차를 가지는데 비해 Elapsed-time측정방법은 회전속도가 작을수록 오차가 줄어드나 저속일 때 오차가 현저히 커질 수 있음을 해석적으로 확인하였다.

탈접착 후처치시 핸드피스(handpiece) 속도가 치아에 미치는 영향에 대한 비교 연구 (A comparison study of the effects of handpiece speed on teeth in debonding procedure)

  • 박수병;김구호;하만희
    • 대한치과교정학회지
    • /
    • 제34권1호
    • /
    • pp.83-91
    • /
    • 2004
  • 본 연구는 탈접착 후처치시 사용된 핸드피스(handpiece)속도에 따른 처치 효율성과 환자 불편감 정도를 알아보기 위하여 시행되었다. 발거된 소구치(50개)에 브라켓을 접착하고 제거한 후 tungsten carbide bur를 장착한 저속 핸드피스와 ultra-fine diamond finishing bur를 장착한 고속 핸드피스로 각각 25개씩 탈접착 후처치를 시행했으며, 이때 각 실험군내 치아의 진동정도와 치수강내 온도 변화를 측정하였다. 이후 각 실험군(저속, 고속 핸드피스군)에서 임으로 10개씩의 치아를 선택하여 주사전자현미경으로 법랑질 표면에 대한 평가를 시행하여, 다음과 같은 결론을 얻었다. 1. 저속 핸드피스를 사용한 레진 제거시 다양한 진폭의 치아 진동이 고속 핸드피스를 이용한 경우보다 많이 나타났다. 2. 고속 핸드피스를 이용한 경우의 치수강내 온도변화가 저속 핸드피스를 사용한 경우보다 유의성 있게 높았으며, 레진 제거 시간 역시 두 배정도 길게 걸렸다. 3. 레진 제거 후 법랑질 표면에 대한 주사전자현미경상은 고속 핸드피스를 사용한 경우에서 절흔들(notches)과 잔여레진들이 저속 핸드피스를 사용한 경우보다 많은 것을 보여주었다.

고속 단발 가시화 스파크 점화 엔진에서의 연소 특성에 대한 선회효과 연구 (Effects of Swirl on Flame Development and Late Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine)

  • 김성수;김승수
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.54-64
    • /
    • 1995
  • The effects of swirl on early flame development and late combustion characteristic were investigated using a high speed single-shot visualized 51 engine. LDV measurements were performed to get better understanding of the flow field in this combustion chamber. Spark plugs were located at half radius (R/2) and central location of bore. High speed schlieren photographs at 20,000 frames/sec were taken to visualize the detailed formation and development of the flame kernel with cylinder pressure measurements. This study showed that high swirl gave favorable effects on combustion-related performances in terms of the maximum cylinder pressure and flame growth rate regardless of spark position. However, at R/2 ignition the low swirl shown desirable effects at low engine speed gave worse performances as engine speed increased than without swirl. There were distinct signs of slow-down in flame growth during the period when the flame front expanded from 2.5mm in radius until it reached 5.0mm apparently due to the presence of ground electrode. There seemed to be heat transfer effect on the flame expansion speed which was evidenced in high swirl case by the slowdown of the late flame front presumably caused by relatively large heat loss from burned gas to wall compared with low- or no-swirl cases.

  • PDF

비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

고속 충돌제트의 불안정 특성 (Instability of High-Speed Impinging Jets(II))

  • 권영필;임정빈
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.450-467
    • /
    • 1998
  • The characteristics of the unstable impinging circular jet is investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes S1 and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed. At low speed the S2 mode is dominant and switched by the S1 mode as the speed increases. When the jet speed is high the S1 mode is very active over the impinging distance from half the nozzle diameter to its ten times, while the S2 mode occurs at shorter distance corresponding to stage 2 and 3. The helical mode H seems unstable, likely to be influenced much by the experimental environment, and occurs at relatively high speed with almost the same frequency characteristics as the S2 mode. By estimating the convection speed of the unstable jet, it is found that the ratio of the convection speed to the jet speed decreases with both Strouhal number and Reynolds number and the speed of S2 mode is faster than the Si mode. When the present experimental results are compared with the previous investigations performed for the hole tone and the impinging tone with a small plate, the S1 mode is found to be associated with the ring vortex of large diameter with low speed, but the S2 mode with the vortex of small diameter with high speed. In addition, the frequency is found to be influenced by the nozzle configuration but the characteristics is almost the same. From the impinging distance and frequency range, it can be deduced that S1 mode is related with the jet column mode and S2 mode with the shear mode.

Evaluation of Low Power and High Speed CMOS Current Comparators

  • Rahman, Labonnah Farzana;Reaz, Mamun Bin Ibne;Marufuzzaman, Mohammad;Mashur, Mujahidun Bin;Badal, Md. Torikul Islam
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.317-328
    • /
    • 2016
  • Over the past few decades, CMOS current comparators have been used in a wide range of applications, including analogue circuits, MVL (multiple-valued logic) circuits, and various electronic products. A current comparator is generally used in an ADC (analog-to-digital) converter of sensors and similar devices, and several techniques and approaches have been implemented to design the current comparator to improve performance. To this end, this paper presents a bibliographical survey of recently-published research on different current comparator topologies for low-power and high-speed applications. Moreover, several aspects of the CMOS current comparator are discussed regarding the design implementation, parameters, and performance comparison in terms of the power dissipation and operational speed. This review will serve as a comparative study and reference for researchers working on CMOS current comparators in low-power and high-speed applications.

Friction Characteristics of piston Skirt Parametric Investigation

  • Cho, Myung-Rae;Kim, Jee-Woon;Moon, Tae-Sun;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2002
  • The purpose of this paper is to investigate the effects of design parameters on the friction loss in piston skirt. An analytical model to describe the friction characteristics of piston skirt has been presented, which is based on the secondary motion of piston and mixed lubrication theory, It could be shown that the skirt friction closely depends on the side force acted on the piston pin. The side force is inf1uenced by cylinder pressure at low engine speed, but by inertia force at high engine speed. The usage of extensive skirt area and low weight piston is effective to reduce the friction loss at high speed. The low viscosity oil considerably decreases viscous friction as engine speed increases, but it increases boundary friction at low engine speed. From the parametric study, it is found that the skirt axial profile is the most important design parameter related to the reduction of skirt friction.