• Title/Summary/Keyword: Low pressure diesel engine

Search Result 204, Processing Time 0.027 seconds

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

A Study on the Engine Performance and Emission Characteristics in a LP EGR System with Electronic Throttle Control (ETC를 적용한 저압 EGR시스템의 엔진성능 및 배출가스 특성에 관한 연구)

  • Park, Jun-Heuk;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Research and development of LP EGR system for the performance improvement and emission reduction on diesel engine is proceeding at a good pace. LP EGR system seems to be helpful method to further reduce$NO_x$ emissions while maintaining PM emissions at a low level because the boost pressure is unchanged while varying EGR rate. This study is experimentally conducted on a 2.0L common rail DI engine at the medium load condition (2000 rpm, BMEP 1.0 MPa, boost pressure 181.3 kPa) that difficult to use large amount of EGR gas because of deteriorations of performance and fuel consumption. And we investigated the characteristics of performance and fuel consumption while varying EGR systems. The overall results using LP EGR system equipped with ETC identified benefits on reduction of PM and improvement of fuel consumption and thermal efficiency while keep the $NO_x$ level compared to HP EGR and LP EGR with back pressure valve.

Cleaning Interval Selection for SCR Considering Endurance Reliability and Emissions Reduction Efficiency in Heavy Duty Commercial Engine (대형 상용 엔진에서 SCR의 클리닝 주기 선정 및 저감효율에 따른 내구신뢰성 특성 연구)

  • Shin, Jaesik;Kang, Jungho;Kim, Hyongjun
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • Purpose: Performance recovered from SCR through cleaning was studied, measuring differential pressure, NOx reduction efficiency, fuel consumption and engine power before and after cleaning. Ideal cleaning intervals are proposed based on SCR mileage and differential pressure. SCR endurance and reliability improvements through cleaning were studied through physicochemical testing of SCR durability at 43,000km 50,000km, and 110,000km respectively. Methods: Engine power, fuel consumption and exhaust gas were measured using engine full load tests and ND-13 MODE by installing the SCR before cleaned at total engine mileages of 400,000 km, 300,000km and 200,000km. The same tests were performed after cleaning the SCR catalytic converter. Endurance and reliability of the SCR cleaning was studied through the same test by SCR catalyst after each 43,000km 50,000km, 110,000km, durability test on SCR cleaning. Conclusion: We confirmed the low-performance of the SCR due to clogging is restored by SCR cleaning technology. The NOx reduction efficiency was restored to 82%, 86% and 88% from 69%, 72% and 79%. As well as the NOx reduction efficiency, it was confirmed that the engine power, fuel consumption and back pressure was restored to fresh SCR levels. As a result of the durability and reliability achieved through SCR cleaning, we confined the appearance and reduction efficiency through visual inspection and ND-13 MODE are similar to new SCR catalysts. Finally, it was judged that there was no change in performance even when driving the SCR without cleaning throughout the 100,000 km mileage warranty.

An Experimental Study on Expansion of Operation Range by Lean Boosting for a HCCI H2 Engine (희박과급에 의한 수소 예혼합 압축착화 기관의 운전영역 확장에 관한 실험적 연구)

  • Ahn, Byunghoh;Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.573-579
    • /
    • 2013
  • Hydrogen engine with homogeneous charged compression ignition can achieve high efficiency by high compression ratio and rapid chemical reaction rates spatially. However, it needs to expansion of the operation range with over-all load conditions which is very narrow due to extremely high pressure rise rate. The adoption of the lean boosting in a HCCI $H_2$ engine is expected to be effective in expansion of operation range since minimum compression ratio for spontaneous ignition is decreased by low temperature combustion and increased surround in-cylinder pressure. In order to grasp its possibility by using lean boosting in the HCCI $H_2$ engine, compression ratio required for spontaneous ignition, expansion degree of the operation range and over-all engine performance are experimentally analyzed with the boosting pressure and supply energy. As the results, it is found that minimum compression ratio for spontaneous ignition is down to the compression ratio(${\varepsilon}$=19) of conventional diesel engine due to decreased self-ignition temperature, and operation range is extended to 170% in term of the equivalence ratio and 12 times in term of the supply energy than that of naturally aspirated type. Though indicated thermal efficiency is decreased by reduced compression ratio, it is over at least 46%.

Effect of Airborne Noise from Ship Machinery on Underwater Noise (선박의 장비 공기소음이 수중소음에 미치는 영향)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.569-574
    • /
    • 2011
  • In research vessels or naval ships, airborne noise from machineries such as diesel engine is the major source of underwater noise at low speed. In this paper, effect of engine noise on underwater noise is studied by considering two paths; sound radiation from hull plate and direct airborne noise transmission through hull plate. SEA (Statistical energy analysis) is used to predict hull plate vibration induced by engine noise, where SEA model consists of only two subsystems; engine room air space and hull plate. The pressure level in water is calculated from sound radiation by plate. Engine noise transmission through hull plate is obtained by assuming plane wave propagation in air-limp plate-water system. Two effects are combined and compared to the measurement, where speaker is used as a source in engine room and sound pressure levels in engine room and water are measured. The hydrophone is located 1 m away from the hull plate. It is found below 1000 Hz, prediction overestimates underwater sound pressure level by 5 to 12 dB.

On Rate of Multi-Hole Injector for Diesel Engine (디이젤 기관용 다공연료 분사 밸브의 분사율 측정)

  • Jeong, Dal-Sun;An, Su-Gil;Gwon, Gi-Rin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Ifis recommended that the injection rate should be accurate and reliable in the input data of the performance simulation in diesel engine. Matsuoka Sin improved W. Bosch's injection ratio measurement system. Matsuoka Sin reduced length of the test pipe and set the orifice. However, it was not measured accurately to measure the injection ratio due to reflection wave. In the present thesis, the improved measurement system with combination of the conventional W. Bosch type injection ratio measurement system and Matsuoka Sin type corrected W. Bosch type was practically made. The location of orifice and throttle valve was modified and set one more back pressure valve in order to reduce the effect of reflection wave. The results according to injection condition of multi-hole nozzle are following: 1. Measurement error of injection ratio measurement system in this thesis was $\pm$ 1 %, therefore, its reliability was good. 2. The form of injetion ratio is changed from trapezoidal shape to triangle shape with increase of revolution per minute when injection amount is constant. 3. In the case of constant rpm, the initial injection ratio is almost constant regardless of the amount, meanwhile the injection period becomes longer with increase of the amount. 4. The injection pressure of nozzle isn't largely influenced with injection ratio in the case of constant injection amount and rpm, otherwise the initial injection amount is increased by 3-4% when the injection pressure is low. 5. The injection ratio isn't nearly influenced with back pressure.

  • PDF

An Investigation of Effects of Fuel Stratification and Cooled EGR on DME HCCI Engine's Operating Ranges by Numerical Analysis (농도성층화와 Cooled EGR이 DME HCCI 엔진의 운전영역에 미치는 영향에 관한 수치해석)

  • Jeong, Dong-Won;Amarbayar, D.;Lim, Ock-Taeck
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Homogeneous charge compression ignition (HCCI) engines have the potential to provide both diesel-like efficiency and very low emissions of nitrogen oxide (NOx) and particulate matter(PM). However, several technical issues still must be resolved before HCCI can see application. Among these, steep pressure-rise rate which leads to narrow operating range of HCCI engine continues to be a major issue. This work investigates the combination of two methods to mitigate the excessive pressure-rise rates at high power output, namely fuel stratification and Cooled exhaust-gas recirculation (Cooled EGR), after identifying the each effects to pressure-rise rate. When applying the fuel stratification to simulation, total fuelling width of 0.15 at BDC is set as a equivalent ratio difference based on the previous research. In order to simulate the effects of cooled EGR, $CO_2$ mole fraction in pre-mixture is changed ranging from 0 to 30%. DME which has a characteristic of two-stage ignition is used as a fuel.

A study on the noise improvement of the European vehicles, with using NVH material (유럽 수입 차량의 소음개선을 위한 NVH소재 적용연구)

  • Kwon, Joseph;Kim, Chan-Mook;Sa, Jong-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.680-685
    • /
    • 2006
  • The latest trend in the automotive industry demands the development of high stiffness car bodies and the securement of inter-system performance for low vibration and noise vehicles. This demand, however, conflicts with need for light weight design and greater fuel efficiency, thus raising the importance of optimization design to satisfy both developmental goals. We chose two European medium sedans, which has gasoline engine and diesel one, to elucidate the noise characteristics of diesel passenger cars, whose sales have been increasing in both Korea and Europe. In the present study a systematic experiment was conducted to analyze the noise characteristics in diesel cars. we made it possible for differentiating car management according to customer demand while allowing for improved commercial feasibility. it was possible to improve interior noise by 2 dB(A) on average sound pressure level. As a result, by 4% higher on articulation index(AI).

  • PDF

A Study for Reduction of Combustion Noise in Diesel Engine by Wiebe's Combustion Function (Wiebe 燃燒函數에 의한 디이젤機關 의 燃燒騷音低減 에 관한 硏究)

  • 이성노;궁본등;촌산정;노상순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.548-554
    • /
    • 1985
  • This research is to find a means of reducing diesel engine combustion noise with none or minimum sacrifice of engine performance by investigating the influence of Cylinder Pressure Level(CPL). For this purpose, modified Wiebe's combustion function, considering the heat release curve as a combustion of both premixed and diffusive combustion portion, was exclusively used to obtain the indicator diagram and computer coeds were developed for the numerical analysis. Following are the results of this research. (1) CPL increases almostly with lag of ignition timing increasing .alpha. and decreasing. theta.$_{d}$, but at the crank angle with the maximal efficiency, CPL is independent of .alpha. and .theta.$_{d}$ with constant value of 200 dB especially at the low frequency. (2) For the constant ignition timing, the effects of .alpha. and .theta.$_{d}$ on CPL were the most significant at the frequency of about 1KHz and 300Hz respectively. (3) For the constant value of .alpha. and .theta.$_{d}$, CPL increases linearly with load but thermal efficiency increase very rapidly with maximum value of load Q$_{T}$=30-40 MJ/Kmol, then starts to decrease slowly. (4) The most effective way of reducing combustion noise without sacrificing thermal efficiency, is to decrease .alpha.. In the case of constant .alpha., there always exists a optimum value of .theta.$_{d}$ with respect to the various compression ratio.o..atio.o..

Improvement of Lubrication Characteristics in Fuel Injection Pump for Medium-Speed Diesel Engines: Part I - Application of Profile Shape

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2015
  • In this research, effects of profile changes of stem section of the plunger on the lubrication characteristics of a fuel injection pump (FIP) were evaluated by hydrodynamic lubrication analysis. The clearance between plunger and barrel was divided into two regions, head and stem. The head was not involved in preventing a decrease of fuel oil pressure. So, research efforts were focused on both edges of the plunger’s stem. The two -dimensional Reynolds equation was used to evaluate lubrication characteristics with variations in viscosity, clearance and profile for a laminar, incompressible, unsteady-state flow. Moreover, the equilibrium equation of moment and forces in the vertical and horizontal directions were used to determine the motion of the plunger. The equations were discretized using the finite difference method. Lubrication characteristics of the FIP were investigated by comparing the dimensionless minimum film thickness, or film parameter, which is the ratio of minimum film thickness to surface roughness. Through numerical analyses, we showed that the profile of the lower edge of the stem had no effect on lubrication characteristics, but the profile of the upper edge had a significant influence on lubrication characteristics. In addition, changes in the profile were more effective in improving lubrication characteristics under low viscosity conditions.