• 제목/요약/키워드: Low pressure diesel engine

검색결과 204건 처리시간 0.026초

고압 디젤엔진을 이용한 폐회로 시스템의 운전특성에 관한 고찰 (An Investigation on Operating Characteristics of the Closed Cycle System Using High Pressure Diesel Engine)

  • 김인교;박신배
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.65-72
    • /
    • 2002
  • The closed cycle diesel system is operated in closed circuit system where there is non air breathing with working fluid consists of combination of oxygen, argon and recycled exhaust gas far obtaining underwater or underground power sources. Experimental apparatus using the MTU8V183SE92 high pressurized engine adapted for closed cycle running, capable of operating at the system pressure of maximum 5 bar is constructed with ACAP as data acquisition system in order to operate equally in the open cycle in surface or the closed cycle in submerged conditions. The general features and the characteristics of combustion of HP(high pressure) diesel engine, specially designed and manufactured only for CCDE, are investigated. The test results of performance of HP diesel engine in closed cycle system are presented with respect to power and boost pressure and compared with those of low pressure diesel engine. The oxygen concentration and specific heat ratio are investigated with its deviation

폐회로 시스템에서 고압 디젤엔진의 연소특성에 관한 연구 (A Study on Combustion Characteristics of the High Pressure Diesel Engine in Closed Cycle System)

  • 김인교;박신배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.457-463
    • /
    • 2002
  • The closed cycle diesel engine is used in a closed circuit system which has no air breathing. The working fluid as intake mixture are consisted of oxygen, argon and recirculated exhaust gas in order to obtain underwater or underground power sources. In the present study, the high pressure diesel engine which can be operated by the closed cycle system with high intake pressure for increasing the net power rate is designed. It has been carried out to investigate the combustion characteristics of high pressure diesel engine according to the power rate. The maximum cylinder pressure and heat release rate were investigated. Also, major experimental data such as specific fuel consumption rate, oxygen concentrations, fuel conversion efficiency, polytropic exponent, and IMEP were compared with low pressure diesel engine experimental data.

An Experimental Study on the Improvement of Turbocharger Lag by Means of Air Injection in a Turbocharged Diesel Engine

  • Choi, Nag-Jung;Oh, Seong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권7호
    • /
    • pp.951-962
    • /
    • 2010
  • An experimental study was performed to investigate the improvement of response performance of a turbocharged diesel engine under the operating conditions of low speed and fast acceleration. In this study, the experiment for improving the low speed and acceleration performance is performed by means of injecting air into the intake manifold of compressor exit during the period of low speed and application of a fast acceleration from low speed. The effects of air injection into the intake manifold on the response performance were investigated at various applicant parameters such as air injection pressure, accelerating rate, accelerating time, engine speed and load. The experimental results show that air injection into the intake manifold at compressor exit is closely related to the improvement of turbocharger lag under low speed and accelerating conditions of a turbocharged diesel engine. During the rapid acceleration period, the air injection into the intake manifold of turbocharged diesel engine indicates the improvement of the combustion characteristics and gas pressure in the cylinder. At low speed range of the engine, the effect of air injection shows the improvement of the pressure distribution of turbocharger and combustion pressure during the period of gas exchange pressure.

상용 디젤엔진의 저압 순환 EGR 추가에 대한 성능 평가 (Performance Evaluation on the Addition of Low-pressure Loop EGR in a Commercial Diesel Engine)

  • 왕태중;이종윤;심의준;김득상;이동인
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.105-110
    • /
    • 2011
  • Through this study, the performance evaluation on the addition of low-pressure loop EGR(Exhaust Gas Recirculation) in a 6.0 L commercial diesel engine was carried out using WAVE modeling and simulation. Since the key technology of advanced diesel engine combustion such as low-temperature combustion is to steadily supply high rates of EGR in a wide operating range, the current study could be effectively contribute to the design and development processes of up-to-date diesel engine systems as real-world reference data. The current simulation results show that the system in which low-pressure loop EGR is added shows almost 2.3 times increase in maximum EGR rate at 1000 rpm as well as almost 1.6 times increase at 2200 and 1600 rpm in comparison with an engine system employing high-pressure loop EGR only. Also, both turbocharger axis speed and charging pressure level did not deteriorate due to the addition of low-pressure loop EGR at 2200 and 1000 rpm, but they were fairly decreased at 1600 rpm.

전자제어 EGR을 사용한 대형디젤기관의 배출가스연구 (An Exhaust Gas Study of HD Diesel Engine with the Electronic control EGR)

  • 박귀열;오용석;문병철
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.76-81
    • /
    • 2006
  • Modem after-treatment technology has been developed variously in order to decrease exhausted emission in diesel engine. However, it seems very difficult to comply with updated stringent emission standards. Specially, it has been many years that exhaust gas from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the electronic control EGR and the target for this research is heavy-duty turbo-diesel engine with EGR technology(High pressure route and low pressure route system).

디젤기관의 연소에 미치는 분사계의 영향 (Effects of the fuel injection system on combustion in a diesel engine)

  • 권순익;김완
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

COMBUSTION AND EMISSION CHARACTERISTICS OF A TURBOCHARGED DIESEL ENGINE FUELLED WITH DIMETHYL ETHER

  • Wu, J.;Huang, Z.;Qiao, X.;Lu, J.;Zhang, L.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.645-652
    • /
    • 2006
  • This paper is concerned with an experimental study of a turbocharged diesel engine operating on dimethyl ether(DME). The combustion and emission characteristics of DME engine were investigated. The results showed that the maximum torque and power with DME could achieve a greater level compared to diesel operation, particularly at low speeds; the brake specific fuel consumption with DME was lower than the diesel at low and middle engine speeds. The injection delay of DME was longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of DME engine were lower than those of diesel. The combustion velocity of DME was faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, $NO_x$ emissions of the DME engine were reduced by 41.6% on ESC data. The DME engine was smoke free at all operating points of the engine.

대형디젤엔진의 저온연소 시스템 최적화에 관한 연구 (A Study of Low Temperature Combustion System Optimization for Heavy Duty Diesel Engine)

  • 한영덕;심의준;신승협;김득상
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.178-184
    • /
    • 2015
  • According to the regulation on the environment and fuel efficiency is becoming strict, many experiments are conducted to improve efficiency and emission in internal combustion engines. LTC (Low temperature combustion) technology is a promised solution for low emissions but there are a few barriers for the commercial engine. This paper includes optimization that applies LTC method to heavy duty diesel engine. Adequate LTC was applied to low and middle load as adaptability in heavy duty diesel engine, and optimization focused on reduction of fuel consumption was proceeded at high load. Through this research, strategy for practical use of LTC was selected, and fuel consumption has improved on the condition that satisfies the emission regulation at systematic viewpoint.

고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성 (Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion)

  • 박영수;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구 (The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio)

  • 최건호;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.