• Title/Summary/Keyword: Low power wireless

Search Result 1,009, Processing Time 0.024 seconds

Adaptive Medium Access Control protocol for low-power wireless sensor network (저전력 무선 센서 네트워크를 위한 적응적 MAC 프로토콜)

  • Kang, Jeong-Hoon;Lee, Min-Goo;Yoon, Myung-Hyun;Yoo, Jun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.209-211
    • /
    • 2005
  • This paper proposes a adaptive medium-access control(MAC) protocol designed for low-power wireless multi-hop sensor networks which is used for connecting physical world and cyber computing space. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining inactive for long time, but becoming suddenly active when specific event is detected. These characteristics of multi-hop sensor networks and applications motivate a MAC that is different from traditional wireless MACs about power conservation scheme, such as IEEE 802.11. Proposed MAC uses a few techniques to reduce energy consumption. Result show that proposed MAC obtains more energy savings.

  • PDF

Performance Evaluation of Low Power Communication Techniques Coverage for Internet of Things (IoT를 위한 저전력 통신 기술의 성능 평가)

  • Yoon, JeongHyeon;Kim, Seungku
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1211-1223
    • /
    • 2021
  • Internet of Things(IoT) services have increased the demand for connectivity among electronics devices. As a result, various types of novel wireless communication technologies have been standardized and developed. In this paper, we evaluate the performance of low power wireless communication technologies such as Bluetooth, IEEE 802.15.4, DASH 7, IEEE 802.15.4g, LoRa, and SigFox in various environments. This is the first experiment evaluating various low power wireless communication technologies in real testbed. We expect that the evaluation results will be useful data to other researchers in applying the IoT technology in the future.

6.78MHz Capacitive Coupling Wireless Power Transfer System

  • Yi, Kang Hyun
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.987-993
    • /
    • 2015
  • Wireless power transfer technologies typically include inductive coupling, magnetic resonance, and capacitive coupling methods. Among these methods, capacitive coupling wireless power transfer (CCWPT) has been studied to overcome the drawbacks of other approaches. CCWPT has many advantages such as having a simple structure, low standing power loss, reduced electromagnetic interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system consists of a 6.78MHz class D inverter with a LC low pass filter, capacitor between a transmitter and a receiver, and impedance transformers. The system is verified with a prototype for charging mobile devices.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

Low Power Wireless Interfacing Scheme Controlling Virtual Bitmap in IEEE 802.11b (IEEE 802.11b에서 가상비트맵을 제어하는 저전력 무선 접속 기법)

  • Song Myong-Lyol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.65-71
    • /
    • 2006
  • In IEEE 802.11b wireless network, the access point(AP) sends beacons periodically to manage stations when they are running in low power mode. Stations contend for the transmission medium after they receive a beacon and continuously check its state until it becomes available. Thus the energy consumption of each station increases as the load of wireless network. In this paper, we propose a method to reduce energy consumption controlling virtual bitmap in wireless network with multiple stations. The problems of low power mode in IEEE 802.11b wireless interface are described and a new method to reduce energy consumption is proposed. The proposed method is simulated with the network simulator, ns2, and compared with the low power mode of the IEEE 802.11b. The result measured in terms of station's wakeup time shows some enhancement in energy consumption when multiple stations are communicating through the AP in wireless network.

The Software Algorithm Design a Suitable Ultra-Low Power RF System

  • Kim, Jung-won;Choi, Ung-Se
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • The demand of wireless communication is increased rapidly due to the development of wireless communication systems, and many people have the great interest about the "RF system". The trend of the RF audio system is to design the system with less power consumption. In this paper, we explain the Software Algorithm Design of RF systems that is suitable for low power consumption.

  • PDF

Beam Efficiency of Wireless Power Transmission via Radio Waves from Short Range to Long Range

  • Shinohara, Naoki
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • Wireless power transmission (WPT) is useful technology in near future. There are some kinds of the WPT technologies, WPT via radio waves, resonance coupling, and inductive. Especially the WPT via radio waves is used for multi-purposes from short range to long range application. However, unfortunately it is misunderstood that it is low efficiency and low power. In this paper, I show the theory of beam efficiency between transmitting antennas and receiving antennas and also show some high efficient applications of the WPT via radio waves. Especially, I pick up a wireless power charging system of an electric vehicle and show the experimental results. I show difference between the theory of beam efficiency and the experimental results of short range WPT. I indicate that reasons of poor beam efficiency in the experiment are (1) change of impedance caused by mutual coupling between transmitting antennas and receiving antennas, (2) oblique direction of microwave power to receiving antennas caused by short distance.

Research on Medium-power Wireless Power Transmission using Commercial Power Frequency (60Hz) (상용전원 주파수(60Hz)를 사용한 중전력 무선전력전송 연구)

  • Gi-Bum Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.497-506
    • /
    • 2024
  • In this paper, medium-power wireless power transmission is implemented using the commercial power frequency (60 Hz). Since general magnetic induction wireless power transmission devices use more than several tens of kHz, the commercial power frequency (60 Hz) cannot be used as is. Therefore an AC/DC converter is used to convert the 60 Hz power frequency into DC, and a high-frequency power amplifier is used to convert DC into several tens of kHz. In magnetic induction wireless power transmission, the AC/DC converter and high-frequency power amplifier are removed, and a extremely low frequency wireless power transmission(ELF-WPT) system using commercial frequency consisting of only transmitting resonance tank, transmitting coil, receiving resonance tank, and receiving coil is implemented, and verified through wireless power transmission experiments.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

Wireless Digital Water Meter with Low Power Consumption for Automatic Meter Reading (원격검침을 위한 저 전력 무선 디지털 수도계량기)

  • Lee, Young-Woo;Oh, Seung-Hyueb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.963-970
    • /
    • 2008
  • Recently, several papers for reading meters remotely using RFID/USN technologies have been presented. In the case of water meter, there has been neither commercial product nor paper. In this paper, we describe the design and implementation of wireless digital water meter with low power consumption. We use magnetic hole sensors to compute the amount of water consumption. The meter of water consumption is transferred via ZigBee wireless protocol to a gateway. Low power consumption design is essential since a battery should last till the life time of water meter. We present that dual batteries haying 3V, 3000mAh, would last 8 years by analyzing the real power consumption of our water meter.