• Title/Summary/Keyword: Low magnetic field

검색결과 798건 처리시간 0.026초

Measuring T1 contrast in ex-vivo prostate tissue at the Earth's magnetic field

  • Oh, Sangwon;Han, Jae Ho;Kwon, Ji Eun;Shim, Jeong Hyun;Lee, Seong-Joo;Hwang, Seong-Min;Hilschenz, Ingo;Kim, Kiwoong
    • 한국자기공명학회논문지
    • /
    • 제23권1호
    • /
    • pp.12-19
    • /
    • 2019
  • A former study has shown that the spin-lattice relaxation time ($T_1$) in cancerous prostate tissue had enhanced contrast at an ultra-low magnetic field, $132{\mu}T$. To study the field dependence and the origin of the contrast we measured $T_1$ in pairs of ex-vivo prostate tissues at the Earth's magnetic field. A portable and coil-based nuclear magnetic resonance (NMR) system was adopted for $T_1$ measurements at $40{\mu}T$. The $T_1$ contrast, ${\delta}=1-T_1$ (more cancer)/$T_1$(less cancer), was calculated from each pair. Additionally, we performed pathological examinations such as Gleason's score, cell proliferation index, and micro-vessel density (MVD), to quantify correlations between the pathological parameters and $T_1$ of the cancerous prostate tissues.

Partial Solution for Concomitant Gradient Field in Ultra-low Magnetic Field: Correction of Distortion Artifact

  • Lee, Seong-Joo;Shim, Jeong Hyun
    • 한국자기공명학회논문지
    • /
    • 제24권3호
    • /
    • pp.66-69
    • /
    • 2020
  • In ultra-low field magnetic resonance imaging (ULF-MRI), the strength of a static magnetic field can be comparable to that of gradient field. On that occasion, the gradient field is accompanied by concomitant gradient field, which yields distortion and blurring artifacts on MR images. Here, we focused on the distortion artifact and derived the equations capable of correcting it. Its usefulness was confirmed through the corrections in both simulated and experimental images. This solution will be effective for acquiring more accurate images in low and/or ultra-low magnetic fields.

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.

자기-전기(ME) 복합체를 활용한 초미세 자기장 감지 기술 (Sensing of ultra-low magnetic field by magnetoelectric (ME) composites)

  • 황건태;송현석;장종문;류정호;윤운하
    • 세라미스트
    • /
    • 제23권1호
    • /
    • pp.38-53
    • /
    • 2020
  • Magnetoelectric (ME) composites composed of magnetostrictive and piezoelectric materials derive interfacial coupling of magnetoelectric conversion between magnetic and electric properties, thus enabling to detect ultra-low magnetic field. To improve the performance of ME composite sensors, various research teams have explored adopting highly efficient magnetostrictive and piezoelectric phases, tailoring of device geometry/structure, and developing signal process technique. As a result, latest ME composites have achieved not only outstanding ME conversion coefficient but also sensing of ultra-low magnetic field below 1pT. This article reviews the recent research trend of ME composites for sensing of ultra-low magnetic field.

Proposing a low-frequency radiated magnetic field susceptibility (RS101) test exemption criterion for NPPs

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1032-1036
    • /
    • 2019
  • When the equipment which is related to safety or important to power production is installed in nuclear power plant units (NPPs), verification of equipment Electromagnetic Susceptibility (EMS) must be performed. The low-frequency radiated magnetic field susceptibility (RS101) test is one of the EMS tests specified in U.S NRC (Nuclear Regulatory Commission) Regulatory Guide (RG) 1.180 revision 1. The RS101 test verifies the ability of equipment installed in close proximity to sources of large radiated magnetic fields to withstand them. However, RG 1.180 revision 1 allows for an exemption of the low-frequency radiated magnetic susceptibility (RS101) test if the safety-related equipment will not be installed in areas with strong sources of magnetic fields. There is no specific exemption criterion in RG 1.180 revision 1. EPRI TR-102323 revision 4 specifically provides a guide that the low-frequency radiated magnetic field susceptibility (RS101) test can be conservatively exempted for equipment installed at least 1 m away from the sources of large magnetic fields (>300 A/m). But there is no exemption criterion for equipment installed within 1 m of the sources of smaller magnetic fields (<300 A/m). Since some types of equipment radiating magnetic flux are often installed near safety related equipment in an electrical equipment room (EER) and main control room (MCR), the RS101 test exemption criterion needs to be reasonably defined for the cases of installation within 1 m. There is also insufficient data regarding the strength of magnetic fields that can be used in NPPs. In order to ensure confidence in the RS101 test exemption criterion, we measured the strength of low-frequency radiated magnetic fields by distance. This study is expected to provide an insight into the RS101 test exemption criterion that meets the RG 1.180 revision 1. It also provides a margin analysis that can be used to mitigate the influence of low-frequency radiated magnetic field sources in NPPs.

생체 실험용 2-축(軸) 극저주파 자기장 발생 장치의 설계 (Design of 2-Axis Magnetic Field Source for in Vivo Experiments at Extremely Low Frequency)

  • 김정호;김윤명
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.13-17
    • /
    • 2003
  • In this paper, the design parameters for the magnetic field source at extremely low frequency are proposed. This facility can be used for in vivo experiments with small animals to investigate biological response to the driving magnetic fields. In case that the exposed animals are motionless, the animals may be affected by the directivity of driving field. To avoid this effect, a 2-axis ELF magnetic field driving apparatus was designed, The optimum location and number of turns of each coil were obtained by numerical analysis. Applying these data to the MATLAB code (for computation), the magnetic field distribution was obtained. The calculation result for a well-designed facility showed that the space in which the amplitude of the magnetic field lies within the 95% of the magnetic field distribution was more than 60% of each axis length.

  • PDF

저자장 자기공명영상 시스템 내에서 초상자성 나노입자 온열치료를 위한 발열 평가 (Feasibility Study on Magnetic Nanoparticle Hyperthermia in Low Field MRI)

  • 김기수;조민형;이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권4호
    • /
    • pp.105-110
    • /
    • 2014
  • For the combination of MRI and magnetic particle hyperthermia(MPH), we investigated the relative heating efficiency with respect to the strength of the static magnetic field under which the magnetic nanoparticles are to be heated by RF magnetic field. We performed nanoparticle heating experiments at the fringe field of 3T MRI magnet with applying the RF magnetic field perpendicularly to the static magnetic field. The static field strengths were 0T, 0.1T, 0.2T, and 0.3T. To prevent the coil heat from conducting to the nanoparticle suspension, we cooled the heating solenoid coil with temperature-controlled water with applying heat insulators between the solenoid coil and the nanoparticle container. We observed significant decrease of heat generation, up to 6% at 0.3T(100% at 0T), due to the magnetic saturation of the nanoparticles of 15 nm diameter under the static field. We think MPH is still feasible at low magnetic field lower than 0.3T if stronger RF magnetic field generation is permitted.

마이크로컴퓨터를 이용한 자체 보상형 flux-gate 마그네토미터제작 (Self Compensating Flux-gate Magnetometer Using Microcomputer)

  • 가은미;손대락;손동환
    • 한국자기학회지
    • /
    • 제12권4호
    • /
    • pp.149-153
    • /
    • 2002
  • 지구자기장 이하의 저자기장 측정에 있어서 소형이고 소비전력이 작으면서 장기적 안정성이 요구되는 분야에 flux-gate 마그네토미터를 많이 사용하고 있다. 또한 많은 저자기장 측정분야가 지구자기장의 크기측정보다는 지자장의 변화를 측정하는 경우가 많기 때문에, 본 연구에서 측정범위가 $\pm$1,000 nT, 5pT/√Hz (at 1 Hz)인 flux-gate센서를 사용 $\pm$50000 nT인 지구자기장을 순차적 근사법으로 보상한 후 지구자기장의 변화를 고감도로 측정할 수 있는 3-축의 flux-gate 마그네토미터를 개발하였다.

Magnetization of the stack of HTS tapes

  • Osipov, M.A.;Abin, D.A.;Pokrovskiy, S.V.;Mineev, N.A.;Rudnev, I.A.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권1호
    • /
    • pp.21-24
    • /
    • 2015
  • New results of dependence of magnetic field, trapped by a stack of HTS tapes, on amount of tapes in a stack are reported. Commercial GdBCO tape 12 mm width and without Cu layer was used for the research. Tape was divided in square pieces $12{\times}12mm^2$ from which stacks were formed. Filling factor of the tape was about 1.4%. Measurements were carried out for stacks with height from 5 to 250 pieces and at wide temperature range from liquid helium to liquid nitrogen. Both FC (field cooling) and ZFC (zero field cooling) cooling methods were used in the research. These two methods show matching results with good accuracy. As a result dependences of trapped magnetic flux on amount of tapes for different temperatures were received. Research shows, that with increasing height of the stack trapped magnetic field value reach saturation at about 60 tapes in a stack for low temperatures. From 60 to 100 tapes increase of magnet flux is only 5%. Thus increase amount of tapes in a stack is not profitable. Also investigation of trapped magnet field relaxation was carried out. Relaxation speed decreases with increasing amount of elements. It means that the higher the stack is, the longer trapped flux will be held in cause of the same temperature.

Study on multi-stage magnetic separation device for paramagnetic materials operated in low magnetic fields

  • F. Mishima;Aoi Nagahama;N. Nomura;S. Nishijima
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.13-17
    • /
    • 2023
  • Magnetic separation technology for small paramagnetic particles has been desired for the volume reduction of contaminated soil from the Fukushima nuclear power plant accident and for the separation of scale and crud from nuclear power plants. However, the magnetic separation for paramagnetic particles requires a superconducting high gradient magnetic separation system applied, hence expanding the bore diameter of the magnets is necessary for mass processing and the initial and running costs would be enormous. The use of high magnetic fields makes safe onsite operation difficult, and there is an industrial need to increase the magnetic separation efficiency for paramagnetic particles in as low a magnetic field as possible. Therefore, we have been developing a magnetic separation system combined with a selection tube, which can separate small paramagnetic particles in a low magnetic field. In the previous technique we developed, a certain range of particle size was classified, and the classified particles were captured by magnetic separation. In this new approach, the fluid control method has been improved in order to the selectively classify particles of various diameters by using a multi-stage selection tube. The soil classification using a multi-stage selection tube was studied by calculation and experiment, and good results were obtained. In this paper, we report the effectiveness of the multi-stage selection tube was examined.