• 제목/요약/키워드: Low level cloud

검색결과 68건 처리시간 0.024초

기상청 국지예보모델의 저고도 구름 예측 분석 (Analysis of low level cloud prediction in the KMA Local Data Assimilation and Prediction System(LDAPS))

  • 안용준;장지원;김기영
    • 한국항공운항학회지
    • /
    • 제25권4호
    • /
    • pp.124-129
    • /
    • 2017
  • Clouds are an important factor in aircraft flight. In particular, a significant impact on small aircraft flying at low altitude. Therefore, we have verified and characterized the low level cloud prediction data of the Unified Model(UM) - based Local Data Assimilation and Prediction System(LDAPS) operated by KMA in order to develop cloud forecasting service and contents important for safety of low-altitude aircraft flight. As a result of the low level cloud test for seven airports in Korea, a high correlation coefficient of 0.4 ~ 0.7 was obtained for 0-36 leading time. Also, we found that the prediction performance does not decrease as the lead time increases. Based on the results of this study, it is expected that model-based forecasting data for low-altitude aviation meteorology services can be produced.

NOAA/AVHRR 적외 SPLIT WINDOW 자료를 이용한 운형과 하층수증기 분석 (Analysis of Cloud Types and Low-Level Water Vapor Using Infrared Split-Window Data of NOAA/AVHRR)

  • 이미선;이희훈;서애숙
    • 대한원격탐사학회지
    • /
    • 제11권1호
    • /
    • pp.31-45
    • /
    • 1995
  • The values of brightness temperature difference (BTD) between 11um and 12um infrared channels may reflect amounts of low-level water vapor and cloud types due to the different absorptivity for water vapor between two channels. A simple method of classifying cloud types at night was proposed. Two-dimensional histograms of brightness temperature of the 11um channel and the BTD between the split window data over subareas around characteristic clouds such as Cb(cumulonimbus), Ci(cirrus), and Sc(stratocumulus) was constructed. Cb, Ci and Sc can be classified by seleting appropriate thresholds in the two-dimensional histograms. And we can see amounts of low-level water vapor in clear area as well as cloud types in cloudy area in the BTD image. The map of cloud types and low-level water vapor generated by this method was compared with 850hPa and 1000hPa relative humidity(%) of numerical analysis data and nephanalysis chart. The comparisons showed reasonable agreement.

얼음 미시물리 과정이 도시 열섬이 유도하는 대류와 강수에 미치는 영향 (Influences of Ice Microphysical Processes on Urban Heat Island-Induced Convection and Precipitation)

  • 한지영;백종진
    • 대기
    • /
    • 제17권2호
    • /
    • pp.195-205
    • /
    • 2007
  • The influences of ice microphysical processes on urban heat island-induced convection and precipitation are numerically investigated using a cloud-resolving model (ARPS). Both warm- and cold-cloud simulations show that the downwind upward motion forced by specified low-level heating, which is regarded as representing an urban heat island, initiates moist convection and results in downwind precipitation. The surface precipitation in the cold-cloud simulation is produced earlier than that in the warm-cloud simulation. The maximum updraft is stronger in the cold-cloud simulation than in the warm-cloud simulation due to the latent heat release by freezing and deposition. The outflow formed in the boundary layer is cooler and propagates faster in the cold-cloud simulation due mainly to the additional cooling by the melting of falling hail particles. The removal of the specified low-level heating after the onset of surface precipitation results in cooler and faster propagating outflow in both the warm- and cold-cloud simulations.

수치 예보를 이용한 구름 예보 (Cloud Forecast using Numerical Weather Prediction)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.57-62
    • /
    • 2007
  • In this paper, we attempted to produce the cloud forecast that use the numerical weather prediction(NWP) MM5 for objective cloud forecast. We presented two methods for cloud forecast. One of them used total cloud mixing ratio registered to sum(synthesis) of cloud-water and cloud-ice grain mixing ratio those are variables related to cloud among NWP result data and the other method that used relative humidity. An experiment was carried out period from 23th to 24th July 2004. According to the sequence of comparing the derived cloud forecast data with the observed value, it was indicated that both of those have a practical use possibility as cloud forecast method. Specially in this Case study, cloud forecast method that use total cloud mixing ratio indicated good forecast availability to forecast of the low level clouds as well as middle and high level clouds.

  • PDF

Normalized Cross-Correlations of Solar Cycle and Physical Characteristics of Cloud

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권4호
    • /
    • pp.225-234
    • /
    • 2019
  • We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.

영동지역 기상조건이 구름 및 강설 모의에 미치는 영향: 이상 실험 기반의 사례 연구 (Effects of Meteorological Conditions on Cloud and Snowfall Simulations in the Yeongdong Region: A Case Study Based on Ideal Experiments)

  • 김유준;안보영;김백조;김승범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.445-459
    • /
    • 2021
  • This study uses a cloud-resolving storm simulator (CReSS) to understand the individual effect of determinant meteorological factors on snowfall characteristics in the Yeongdong region based on the rawinsonde soundings for two snowfall cases that occurred on 23 February (Episode 1) and 13 December (Episode 2) 2016; one has a single-layered cloud and the other has two-layered cloud structure. The observed cloud and precipitation (snow crystal) features were well represented by a CReSS model. The first ideal experiment with a decrease in low-level temperature for Episode 1 indicates that total precipitation amount was decreased by 19% (26~27% in graupel and 53~67% in snow) compared with the control experiment. In the ideal experiment that the upper-level wind direction was changed from westerly to easterly, although total precipitation was decreased for Episode 1, precipitation was intensified over the southwestern side (specifically in terrain experiment) of the sounding point (128.855°E, 37.805°N). In contrast, the precipitation for Episode 2 was increased by 2.3 times greater than the control experiment under terrain condition. The experimental results imply that the low-level temperature and upper-level dynamics could change the location and characteristics of precipitation in the Yeongdong region. However, the difference in precipitation between the single-layered experiment and control (two-layered) experiment for Episode 2 was negligible to attribute it to the effect of upper-level cloud. The current results could be used for the development of guidance of snowfall forecast in this region.

영동 대설과 관련된 낮은 층운형 구름의 위성관측 (Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region)

  • 권태영;박준영;최병철;한상옥
    • 대기
    • /
    • 제25권4호
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

Low Level GPU에서 Point Cloud를 이용한 Level of detail 생성에 대한 연구 (Point Cloud Data Driven Level of detail Generation in Low Level GPU Devices)

  • 감정원;구본우;진교홍
    • 한국군사과학기술학회지
    • /
    • 제23권6호
    • /
    • pp.542-553
    • /
    • 2020
  • Virtual world and simulation need large scale map rendering. However, rendering too many vertices is a computationally complex and time-consuming process. Some game development companies have developed 3D LOD objects for high-speed rendering based on distance between camera and 3D object. Terrain physics simulation researchers need a way to recognize the original object shape from 3D LOD objects. In this paper, we proposed simply automatic LOD framework using point cloud data (PCD). This PCD was created using a 6-direct orthographic ray. Various experiments are performed to validate the effectiveness of the proposed method. We hope the proposed automatic LOD generation framework can play an important role in game development and terrain physic simulation.

Relationship between Low-level Clouds and Large-scale Environmental Conditions around the Globe

  • Sungsu Park;Chanwoo Song;Daeok Youn
    • 한국지구과학회지
    • /
    • 제43권6호
    • /
    • pp.712-736
    • /
    • 2022
  • To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, sky-obscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.

MTSAT-1R 정지기상위성 자료를 이용한 전운량 산출 알고리즘 개발 (Development of Cloud Amount Calculation Algorithm using MTSAT-1R Satellite Data)

  • 이병일;김윤재;정주용;이상희;오성남
    • 대기
    • /
    • 제17권2호
    • /
    • pp.125-133
    • /
    • 2007
  • Cloud amount calculation algorithm was developed using MTSAT-1R satellite data. The cloud amount is retrieved at 5 km ${\times}$ 5 km over the Korean Peninsula and adjacent sea area. The algorithm consists of three steps that are cloud detection, cloud type classification, and cloud amount calculation. At the first step, dynamic thresholds method was applied for detecting cloud pixels. For using objective thresholds in the algorithm, sensitivity test was performed for TBB and Albedo variation with temporal and spatial change. Detected cloud cover was classified into 3 cloud types (low-level cloud, cirrus or uncertain cloud, and cumulonimbus type high-level cloud) in second step. Finally, cloud amount was calculated by the integration method of the steradian angle of each cloud pixel over $3^{\circ}$ elevation. Calculated cloud amount was compared with measured cloud amount with eye at surface observatory for the validation. Bias, RMSE, and correlation coefficient were 0.4, 1.8, and 0.8, respectively. Validation results indicated that calculated cloud amount was a little higher than measured cloud amount but correlation was considerably high. Since calculated cloud amount has 5km ${\times}$ 5km resolution over Korean Peninsula and adjacent sea area, the satellite-driven cloud amount could show the possibility which overcomes the temporal and spatial limitation of measured cloud amount with eye at surface observatory.