• Title/Summary/Keyword: Low firing

Search Result 379, Processing Time 0.024 seconds

Influence of Biomass Co-firing on a Domestic Pulverized Coal Power Plant In Terms of CO2 Abatement and Economical Feasibility (다양한 바이오매스 혼소시 국내 미분탄화력에 미치는 이산화탄소 감축 및 경제성 영향 분석)

  • Kim, Taehyun;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • Co-firing of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is a relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would cause reducing plant efficiency and operational flexibility, and increasing operation and capital cost associated with handling and firing equipment of renewable fuels. The aim of this study is to investigate the effects of biomass co-firing on $CO_2$ emission and capital/operating cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as renewable fuels for co-firing with coal. Several approaches by the co-firing ratio are chosen from previous plant demonstrations and commercial co-firing operation, and they are evaluated and discussed for $CO_2$ reduction and cost estimation.

Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle (점호각을 고려한 유도전동기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

A Study on the Characteristics of Low Temperature Firing Phosphor Paste for Flat Light Source (면광원용 저온 소성형 형광체 Paste 특성 연구)

  • Lee, Dong-Wook;Nam, Su-Yong
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.75-81
    • /
    • 2007
  • As manufacturing the low temperature firing paste applicable flat light source for LCD BLU, this study examined the specific quality. For the phosphor pastes, the low temperature firing acryl resin is used as the binder resin. As the result of thermal decomposition characteristics, residual hydroxylcarbon rested under 0.1wt% on 400$^{\circ}C$. With the manufactured paste in this study, the flat light source device is manufactured through the screen printing and it brought the almost 100% of special quality radiation about the phosphor brightness.

  • PDF

The Effect of Frit on Bonding Behavior of Low-firing-substate and Cu Conductor (프릿트 첨가에 따른 저온소성 기판과 Cu와의 접합 거동에 관한 연구)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.601-607
    • /
    • 1995
  • The bond strength between the low-firing-substrate and Cu conductor depended on the softening point and the amount of frit added to the metal paste. The addition of 3 wt% frit (softening point: 68$0^{\circ}C$) to the metal paste resulted in the improvement of bond strength, which was approximately 3 times higher (3kg/$\textrm{mm}^2$) than that of non frit condition. It was also found that fracture surface shifted to the ceramic substrate in the interface region. These phenomena were attributed to the frit migration into the metal-ceramic interface. It was thought that the migration of glass frit occurred extensively when the softening point of glass firt was 68$0^{\circ}C$. The sheet resistance of Cu conductor remained constant by the addition of 4 wt% frit regardless of softening point of frit. For all samples with more than 4 wt% frit, the sheet resistance increased abruptly.

  • PDF

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Fabrication and Characteristics of Low Temperature Firing Substrate by Tape Casting in Fluormica System (Tape Casting에 의한 fluormica계 제조 및 특성 저온 소결 기판의 제조 및 특성)

  • 박대현;최정헌;강원호;김병익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.673-676
    • /
    • 1999
  • We fabricated green sheet by tape casting method with fluormica glass-ceramic powders for fabrication of low temperature co-firing substrate. After ball milling with organic additives, we investigated green strength and density of green sheets which were casted by doctor blade machine. Green sheets were sintered at 700 ~ 1,00$0^{\circ}C$ for 1 ~3hrs. Microstructure, linear shrinkage and dielectric constant of substrates were surveyed.

  • PDF

Fabrication of Anorthite for Low-Firing Ceramic Substrate by PVA Steric-Entrapment Route (폴리머 고착공정을 통한 저온소성기판용 Anorthite의 제조)

  • Kim, Gwang-Seok;Lee, Chung-Hyo;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.595-599
    • /
    • 2002
  • A homogeneous and stable, amorphous-type, anorthite (CaO $Al_2$$O_3$ $2SiO_2$)powder was synthesized by an organic-inorganic steric entrapment route. Polyvinyl alcohol ( PVA) was used as an organic carrier for the precursor ceramic gel. The PVA content, its degree of polymerization and type of silica sol had a significant influence on the calcination and crystallization behavior of the precursors. For densifiction and crystallization at low temperature, porous and soft, amorphous-type anorthite powder was planetary milled for 20h. The milled powder crystallized to stable anorthite phase and densified to a relative density of 94% below $1000^{\circ}C$. In the development of crystalline phases of the planetary milled powder, omisteinbergite phase was unusually observed at $900^{\circ}C$, and then anorthite was observed at $950^{\circ}C$. The sintered anorthite had a thermal expansion coefficient of $4.6$\times$10^{-6}$ /$^{\circ}C$ and a dielectric constant of 7.5 at 1 MHz. Finally, the anorthite synthesized by the new process is expected to be an useful material for low-firing ceramic substrate.

Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over $800^{\circ}C$ which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms $p-p^+$ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep $p^+$ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with $N_2$ gas atmosphere to optimize $V_{oc}$ of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The $V_{oc}$ and pseudo efficiency were measured by Suns-$V_{oc}$ to compare cell properties with varied firing condition.

A Study of Characteristics of Combustion Radical and Exhausted Emissions in a Radiant Burner with Porous Ceramic Mat (다공성 세라믹 매트를 이용한 복사버너에서의 연소라디칼 특성과 배기배출물에 관한 연구)

  • Kim, Young-Su;Cho, Seung-Wan;Kim, Gyu-Bo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.539-546
    • /
    • 2007
  • An experimental study was performed to investigate the characteristics of chemiluminescence in a radiant burner, varying the excess air ratio from 0.91 to 1.67 at firing rate 80.5 to 134.2 kW/m2 on $OH^*,\;CH^*,\;{C_2}^*$ in LNG-Air premixed flames. The signals from electronically excited states of $OH^*,\;CH^*,\;{C_2}^*$ were detected using a Intensified Couple Charged Detector (ICCD) camera. The measurements of exhausted emission were made to investigate the correlation between chemiluminescence and emissions. The chemiluminescence intensity was increased with increase of firing rate like characteristics of $NO_x$ emission. $NO_x$ also increased with increase of firing rate and excess air ratio. It is found that offset of firing rate is more dominant excess air ratio $NO_x$ emission. The maximum chemiluminescence intensity occurs near the stoichiometric excess air ratio or lean conditions in case of high firing rate and the maximum intensity occurs rather than rich conditions in case of relatively low firing rate. Amount of $NO_x$ emission is maximum at near stoichiometric excess air ratio, which is chemiluminescence intensity is maximum.