• 제목/요약/키워드: Low energy building

검색결과 537건 처리시간 0.029초

Theoretical formulation for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace

  • Jouneghani, Habib Ghasemi;Fanaie, Nader;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.437-454
    • /
    • 2022
  • Elliptic-braced simple resisting frame as a new lateral bracing system installed in the middle bay of frame in building facades has been recently introduced. This system not only creates a problem for opening space from the architectural viewpoint but also improves the structural behavior. Despite the researches on the seismic performance of lateral bracing systems, there are few studies performed on the effect of the stiffness parameters on the elastic story drift and calculation of period in simple braced steel frames. To overcome this shortcoming, in this paper, for the first time, an analytical solution is presented for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace subjected to lateral load. In addition, for the first time, in this study, a precise formulation has been developed to evaluate the elastic stiffness variation in a steel frame equipped with a two-dimensional single-story single-span elliptic brace using strain energy and Castigliano's theorem. Thus, all the effective factors, including axial and shear loads as well as bending moments of elliptic brace could be considered. At the end of the analysis, the lateral stiffness can be calculated by an improved and innovative relation through the energy method based on the geometrical properties of the employed sections and specification of the used material. Also, an equivalent element of an elliptic brace was presented for the ease of modeling and use in linear designs. Application of the proposed relation have been verified through a variety of examples in OpenSees software. Based on the results, the error percentage between the elastic stiffness derived from the developed equations and the numerical analyses of finite element models was very low and negligible.

공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰- (Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 -)

  • 최영돈;강용태;김내현;김만회;박경근;박병윤;박진철;홍희기
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발 (Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse)

  • 조정화;이인복;이상연;김준규;크리스티나;최영배;이민형;정효혁;정득영
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.246-254
    • /
    • 2022
  • 본 연구는 급속하게 성장하는 시설농업과 동시에 증가하는 에너지 사용량 및 탄소배출량을 저감하기 위해, 온실의 에너지 부하를 동적으로 분석하기 위한 작물에너지의 다중 회귀모델 개발을 수행하였다. 온실은 연중 안정적인 대량 생산을 위한 적절한 환경을 조성하기 위해 에너지 투입이 필요하다. 도시농업의 일종인 옥상온실 플랫폼을 통해 건물에서 버려지거나 활용되지 않는 에너지를 옥상온실에서 사용할 수 있다. 옥상온실의 효율적인 운영을 위해서는 다양한 환경 조건에 대한 동적 에너지 분석이 선행되어야 하며, 온실에 도입되는 태양 에너지의 40-75%가 작물을 위한 에너지 교환이므로 필수적으로 고려되어야 한다. 한국기계연구원 내 옥상온실에서 여름철에 청경채를 재배하며 생장단계에 따른 에너지 교환을 분석하였다. 작물을 중심으로 미기상 및 양액 환경 분석과 생장 특성 조사를 수행하였다. 정식일수에 따른 엽면적지수를 추정하였으며, 개발된 수식은 결정계수 0.99로 분석되었다. 또한 작물에너지 흐름에 지배적인 잎 표면온도로부터의 현열부하와 증발산에 의한 잠열부하로 나누어 모델을 개발하였다. 엽온과 증발산량을 각각 다중 회귀모델을 이용하여 추정하고 실측한 값을 비교해 보았을 때, 평균 결정계수 0.95, 0.71로 분석되었으며, 이 모델을 이용하여 옥상온실의 에너지 부하를 동적으로 산정하기 위한 모델에 입력값으로 사용할 수 있을 것으로 판단된다.

MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향 (Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine)

  • 이종규;소정섭
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계 (A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum)

  • 우덕건;서춘원;이효재
    • 실천공학교육논문지
    • /
    • 제14권2호
    • /
    • pp.387-392
    • /
    • 2022
  • 세계적인 탄소 중립에 동참하고자, 대한민국 정부에서도 '녹색건축물 조성 지원 법' 시행령을 통해 2030년까지 모든 건축물에 대해 제로에너지 건축물 인증을 진행할 계획에 있다. 이에 따라 국가적으로도 비교적 생활 밀접 접근성이 좋은 태양광 발전과 관련한 여러 사업을 지원하고 있다. 특히 지붕 설치형 태양광 발전 시스템의 경우 환경 파괴 없이 유휴 공간을 활용하여 에너지를 생산한다는 측면에서 주목받고 있지만, 다른 태양광 발전 설비 대비 낮은 발전효율이 단점으로 지적되고 있다. 따라서 본 논문에서는 이러한 부분을 해소하고자, 단축형 태양광 추적을 위한 태양광 패널 구조물에 관한 연구를 통해 효율적인 태양광 패널 각도 가변 시스템을 제안하고 더불어 지붕 설치형 태양광 발전 시스템의 적용 환경을 고려해 태양광 패널의 파손 및 2차 피해 예방을 위한 방안을 제안한다. 더불어 ICT 융합을 통해 태양광 패널을 제어, 사고 예측 안전 시스템 구성을 프로젝트 기반의 교육 프로그램 연계 구성이 가능할 것으로 판단된다.

정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계 (Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity)

  • 오창보;최병일;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과 (Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment)

  • 오창보;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

저탄소 및 장수명 공동주택 구현을 위한 Green Frame(GF)의 타당성 분석 (A Feasibility Study of Green Frame(GF) for the Implementation of Low-carbon Emissions & Long-life Housing)

  • 홍원기;김선국;김형근;윤태호;윤대영;김승일
    • 한국건축시공학회지
    • /
    • 제10권1호
    • /
    • pp.57-63
    • /
    • 2010
  • 현재 우리나라 공동주택의 근간을 이루는 벽식 공동주택은 가변성의 부족, 보수 및 리모델링의 어려움으로 인하여 단수명화되고 있다. 이로 인하여 발생되는 재건축에 의한 경제적 손실 및 환경 문제는 점차 누적되어가고 있으며 이러한 문제는 앞으로 국가적 차원의 난제가 될 것으로 예상된다. 또한 국내 대표 주거공간으로 자리매김하고 있는 공동주택은 앞으로 다양한 사용자의 요구 및 생활양식의 변화를 수용할 수 있어야 한다. 따라서 평면 가변성에 제약이 있는 벽식 공동주택은 앞으로 지양되어야 하며 가변성이 확보된 새로운 형태의 신개념 공동주택의 개발이 필요한 실정이다. 본 연구의 대상이 되는 GF 공동주택은 기존 벽식 공동주택의 단점을 개선하여 공사비 절감과 공사기간 단축을 가능하게 할 것으로 예측되며, 가변성이 확보된 장수명 구조물로서 국가적으로 추진하고 있는 자원 및 에너지 절감 정책에 부응할 것으로 기대된다. 뿐만 아니라 현 정부가 추진하고 있는 저탄소 녹색성장에 발맞추어 국내 건설 산업의 지속가능한 질적 성장을 가능케 하고 기후변화 문제 해결을 위한 CO2 절감 원천기술로 자리매김할 것이다.

CTL(Coal-to-Liquid) 기술 현황 (The Status and Prospect of CTL (Coal-to-Liquid))

  • 정헌;양정일;김학주;천동현
    • 에너지공학
    • /
    • 제16권2호
    • /
    • pp.64-72
    • /
    • 2007
  • 석탄을 합성석유로 전환시키는 석탄액화(CTL) 공장은 2차 세계대전시 독일 및 영국에서 가동되어 대량의 연료를 공급한 바 있다. 전후 대형 유전이 발견되어 값싼 석유가 공급되면서 CTL 공장의 운전은 중단되었다. 남아프리카공화국의 Sasol사만이 유일하게 1955년에 CTL공장의 조업을 시작하여 현재 하루 15만배럴의 석탄합성석유를 생산하고 있다. 최근 고유가가 지속되고 석유공급에 대한 불안감 때문에 여러 개의 석탄액화 프로젝트가 진행되고 있다. 중국은 2030년까지 석탄함성석유를 연간 3천만톤 (60만배럴/일) 생산할 계획을 수립하였고, 2만배럴/일 규모의 석탄직접액화공장이 2008년 완공될 예정이다. 미국에서도 8개의 CTL 프로젝트가 진행되고 있다. 호주, 필리핀, 인도네시아, 인도 등에서도 석탄액화 프로젝트를 추진하고 있다. 석유를 전량 수업하는 우리나라도 에너지안보 차원에서 CTL에 대한 접근이 필요하다. 본고에서는 석탄액화공정의 역사, 현황 및 최근 동향 그리고 향후 전망에 대하여 기술하였다.

Elasto-plastic time history analysis of an asymmetrical twin-tower rigid-connected structure

  • Wu, Xiaohan;Sun, Yanfei;Rui, Mingzhuo;Yan, Min;Li, Lishu;Liu, Dongze
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.211-228
    • /
    • 2013
  • The structure analyzed in this paper has particular building style and special structural system. It is a rigid-connected twin-tower skyscraper with asymmetrical distribution of stiffness and masses in two towers. Because of the different stiffness between the north and the south towers, the torsion seismic vibration is significant. In this paper, in order to study the seismic response of the structure under both frequent low-intensity earthquakes as well as rare earthquakes at the levels of intensity 7, the analysis model is built and analyzed with NosaCAD. NosaCAD is an nonlinear structure analysis software based on second-development of AutoCAD with ObjectARX. It has convenient modeling function, high computational efficiency and diversity post-processing functions. The deformations, forces and damages of the structure are investigated based on the analysis. According to the analysis, there is no damage on the structure under frequent earthquakes, and the structure has sufficient capacity and ductility to resist rare earthquakes. Therefore the structure can reach the goal of no damage under frequent earthquakes and no collapse under rare earthquakes. The deformation of the structure is below the limit in Chinese code. The time sequence and distribution of damages on tubes are reasonable, which can dissipate some dynamic energy. At last, according to forces, load-carrying capacity and damage of elements, there are some suggestions on increasing the reinforcement in the core tube at base and in stiffened stories.