• Title/Summary/Keyword: Low earth orbit

Search Result 348, Processing Time 0.044 seconds

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

The Analysis of Interference between IMT-2000 and GMPCS (IMT-2000 과 GMPCS간의 간섭 분석)

  • 배태경;차병규;최재훈;조영란
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.401-411
    • /
    • 1999
  • IMT-2000 will provide worldwide mobile telecommunication services with the extended coverage areas such as polar regions and mountainous district. GMPCS also provides global telephony and paging services via satellite network at the altitude of 500~12,000 km. "Big LEO" which is one of the GMPCS systems using frequency above 1 GHz and IMT-2000 will share the frequency range of 1 to 3 GHz. Therefore, there exists possible interference between the two systems which can cause the performance degradation of both systems. In this paper, the radio-propagation modeling and interference analysis methods are presented and these methods are used to analyse the effect of the interference between IMT-2000 and GMPCS on system performance.rformance.

  • PDF

A Study on Modelling and Attitude Control Techniques of LEO Satellite (저궤도 위성체의 모델링 및 자세제어 기법에 관한 연구)

  • Lho, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.9-13
    • /
    • 2009
  • In the three axis control of Low Earth Orbit (LEO) satellite by using reaction wheel and gyro, a reaction wheel produces the control torque by the wheel speed or momentum, and a gyro carries out measuring of the attitude angle and the attitude angular velocity. In this paper, the dynamic modelling of LEO is consisted of the one from the rotational motion of the satellite with basic rigid body model and a flexible model, in addition to the reaction wheel model. A robust controller $(H_\infty)$ is designed to stabilize the rigid body and the flexible body of satellite, which can be perturbed due to disturbance, etc. The result obtained by $H_\infty$ controller is compared with that of the PI (Proportional and Integration) controller, which has been traditionally using for the stabilizing LEO satellite.

The Quality Loss of a X-Band Transmitter on the LEO Satellite (저궤도 관측위성에 탑재된 X-밴드 송신기의 Quality Loss)

  • 동문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1306-1312
    • /
    • 2000
  • The quality loss of a X-band transmitter has been derived by means of MC simulation. The transmitter as a payload of LEO(Low Earth Orbit) satellite is capable of the down transmission the image data of hundreds Mbps generated from the Electro-Optical Instrument in real time. The parameters such as data asymmetry amplitude unbalance,phase unbalance, wave shaping and channel interference are included in the quality loss simulation Assuming that normally distributed gaussian noise is simply added to the channel, the quality loss of 0.7 dB has been obtained through this simulation based on a 95% confidence interval. The obtained quality loss can be applied to the link budgets as an additional loss item.

  • PDF

Preliminary Design of Power Control and Distribution Unit for LEO Application (저궤도 위성 응용을 위한 전력조절분배기 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo;Lee, Sang-Kon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.55-57
    • /
    • 2007
  • A Power control and Distribution Unit (PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU for the small Low Earth Orbit (LEO) Satellite applications. The main constitutes of the PCDU are the battery interface module, solar array regulators with maximum power point tracking (MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation, power distribution modules of unregulated and regulated primary bus, and instrument power distribution modules.

  • PDF

Satellite Anomalies due to Spce Environment Events (우주환경 이벤트에 의한 위성의 이상현상)

  • Park, Jae-Woo;Jeong, Cheol-Oh
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Space Environment including Solar activities such as Solar explosion, Corona Mass Ejection(CMS) is always not friendly for human. Especially it may be fatal to artificial satellites. The lifetime of geostationary communication satellites are reducing due to plasma such as electrons, protons etc. emitting from Sun. This is because the active components constituting communication satellite are easily affected by plasma. Even though the radiation shielding on the components can be a way to prevent, the cost will be high. So the appropriate shielding is necessary and the study on space environment is also. In this study spacecraft anomalies will be investigated from low earth orbit to deep space spacecraft and the correlation between spacecraft anomalies and space environment events including space explosion, geomagnetic storms etc is analyzed.

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator (의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어)

  • Yang, JeongHwan;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.

Performance Test for the SIGMA Communication System

  • Jeong, Seonyeong;Lee, Hyojeong;Lee, Seongwhan;Shin, Jehyuck;Lee, Jungkyu;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.335-344
    • /
    • 2016
  • Scientific CubeSat with Instruments for Global Magnetic Fields and Radiations (SIGMA) is a 3-U size CubeSat that will be operated in low earth orbit (LEO). The SIGMA communication system uses a very high frequency (VHF) band for uplink and an ultra high frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO). For reliable communication, we carried out a laboratory (LAB) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present a communication performance test of SIGMA, a link budget analysis, and a field test process. We also compare the link budget with the field test results of transmitting commands and receiving data.

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.