• Title/Summary/Keyword: Low density polyethylene(LDPE)

Search Result 227, Processing Time 0.022 seconds

Effect of Permeability-Controlled Polyethylene Film on Extension of Shelf-life of Brined Baechu Cabbage (투과도 조절 폴리에틸렌 필름의 절임배추 보존기간 연장효과)

  • Kim, Young-Wook;Jeong, Ji-Kang;Lee, Sun-Mi;Kang, Soon-Ah;Lee, Dong-Sun;Kim, So-Hee;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1767-1772
    • /
    • 2009
  • Brined Baechu cabbages were packed with different films of high density polyethylene (HDPE), aluminium polyethylene (Al/PE), nylon polyamide (Ny/PE), low density polyethylene (LDPE) and permeability-controlled polyethylene (Mirafresh (MF), US patent No. 5972815), and then stored at 4${^{\circ}C}$ for 4 weeks. Changes in quality characteristics of pH, acidity, total bacteria counts, lactic acid bacteria counts, E. coli counts, texture and $O_2$ concentration were determined during the storage. The pH of brined Baechu cabbage packed with Mirafresh (MF) film was 6.25 after 4 weeks from initial pH of 6.80. The acidity of all brined Baechu cabbages increased, however, the increase of the cabbage in MF was the lowest. The levels of total bacteria, lactic acid bacteria and E. coli in the cabbages packed with MF were also lower than the other films. After 4 weeks, of all brined springiness Baechu cabbages decreased, but MF showed relatively high springiness. The $O_2$ concentrations by its permeation through MF were 0.35%-1.00% at 4-25${^{\circ}C}$ after 1 week. In conclusion, MF was found to be the most effective packaging film for brined Baechu cabbage to extend shelf-life.

Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film

  • Kapri, Anil;Zaidi, M.G.H.;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1032-1041
    • /
    • 2010
  • The comparative influence of two nanoparticles [viz., superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT)] upon the in vitro and in situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium was studied. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in vitro conditions, ${\lambda}$-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/$CH_2$ vibrations, along with introduction of hydroxyl residues in the polymer backbone. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM), which revealed greater dissolution of the film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions, which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.

Plastic Films affect the Storage Quality of Green Chili Pepper (포장용 필름에 따른 풋고추의 저장중 품질 변화)

  • 박우포;유재일;조성환
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.207-210
    • /
    • 1998
  • To prolong the shelf life of green chili pepper, packaging films such as 30 $\mu\textrm{m}$ low density polyethylene(LDPE), 20 $\mu\textrm{m}$ perforated polyolefin (SM250), 30 $\mu\textrm{m}$ cast polypropylene (CPP) and 15 $\mu\textrm{m}$ polyolefin (MPD) were used. LDPE showed a suitable gas concentration which consisted of 3-5% O$_2$ and below 5% CO$_2$for keeping quality of green chili peppers after 10 days. Though weight loss was 9.3% for SM250 after 5 days, others showed below 2.0% weight loss after 40 days. Green chili peppers inside CPP package revealed a great decrease in ascorbic acid content after 30 days. SM250 showed a less total microbial count among packages, but there was no great differences among packages.

  • PDF

Zn-Ion Coated Structural $SiO_2$ Filled LDPE: Effects of Epoxy Resin Encapsulation

  • Reddy C. S.;Das C. K.;Agarwal K.;Mathur G N.
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 2005
  • In the present work, a low-density polyethylene (LDPE) composite, filled with Zn-ion coated structural silica encapsulated with the diglycidyl ether of bisphenol-A (DGEBA), was synthesized using the conventional melt-blending technique in a sigma internal mixer. The catalytic activity of the Zn-ions (originating from the structural silica) towards the oxirane group (diglycidyl ether of bisphenol-A (DGEBA): encapsulating agent) was assessed by infrared spectroscopy. Two composites, each with a filler content of $2.5 wt\%$ were developed. The first one was obtained by melt blending the Zn-ion coated structural silica with LDPE in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same LDPE, but with DGEBA encapsulated Zn-ion coated structural silica. Epoxy resin encapsulation of the Zn-ion coated structural silica resulted in its having good interfacial adhesion and a homogeneous dispersion in the polymer matrix. Furthermore, the encapsulation of epoxy resin over the Zn-ion coated structural silica showed improvements in both the mechanical and thermal properties, viz. a $33\%$ increase in the elastic modulus and a rise in the onset degradation temperature from 355 to $371^{\circ}C$, in comparison to the Zn-ion coated structural silica.

Radiation Degradation Detection of LDPE Using Thermoluminescence Method (열발광 특성을 이용한 저밀도 폴리에틸렌의 방사선 열화 검출)

  • Lee, C.;Lee, K.W.;Park, J.N.;Lim, K.J.;Ryu, B.H.;Park, Y.G.;Kang, S.H.;Kim, K.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.43-46
    • /
    • 2001
  • Polymers are widely used as insulating materials at various part of power industry. However, electrical properties of these polymers are easily degraded with their working environments, especially radiation areas. In this research, radiation degradation of low density polyethylene (LDPE) used as cable insulation was evaluated with thermoluminescence characteristics. LDPE was irradiated with gamma ray up to 1000 kGy at a dose rate of 5 kGy/hr in the presence of air at room temperature. Each of the irradiated samples were carried out thermoluminescence analysis as a function of temperature. Interrelationships between thermoluminescence and dielectric characteristics and volume resistivity are investigated as well. The results of thermoluminescence analysis showed that those would be significant factors for evaluation of radiation degradation.

  • PDF

Sorption Characteristics of Tetracycline in Water on Microplastics (수중 테트라사이클린의 미세플라스틱에 대한 흡착 특성)

  • Yu Jin Seo;Ruri Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.276-281
    • /
    • 2022
  • BACKGROUND: Plastics that are used in our daily lives largely end up in the environment. In agricultural environments, plastic wastes and microplastics can be found due to the uses and improper management of plastic products (e.g., vinyl greenhouses and mulching vinyl). Microplastics can also interact with contaminants in the agricultural environment. Therefore, this study was set to investigate the sorption characteristics of tetracycline, one of widely used antibiotics, on microplastics. METHODS AND RESULTS: The sorption tests were carried out with the tetracycline solutions (0-30 mg L-1) and microplastic films prepared from low density polyethylene (LDPE) and polyvinyl chloride (PVC). The residual tetracycline concentrations were analyzed and fitted to the Freundlich and Langmuir isotherm models. The tetracycline sorption patterns on LDPE and PVC films were described better with the Freundlich isotherm model than the Langmuir isotherm model. The isotherm model parameters suggested that the maximum sorption amount of tetracyline was greater for PVC, while the sorption affinity was greater for LDPE. CONCLUSION(S): Different types of microplastics can have different sorption characteristics of tetracycline. Therefore, there is a need for continuous research on the interaction of various types and shapes of microplastics and contaminants in the environment.

Effect of Red Mud Addition to Polyolefin (폴리올레핀에 대한 적니의 첨가효과)

  • Lee, Keun Young;Kim, Jeong Ho
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.93-99
    • /
    • 2000
  • Effect of amount of red mud and processing method on the tensile and impact properties of polymers were investigated when the red mud was added as a filler to polypropylene (PP), low density polyethylene (LDPE) and PP/LDPE blend. Especially in case of PP, increase in the tensile strength, elongation at break and absorbed energy was observed when extrusion was carried out more than two times. Tensile strength showed a very remarkable increase when master batch was used in comparison with simple multiple extrusion. In case of LDPE, 10% addition of red mud resulted in the increase of tensile modulus and impact strength, while 20% addition caused a decrease in the same properties. Addition of 5% EVA could reverse this trend. Addition of 20% red mud to PP/LDPE blend gave a decrease in impact strength but 5% EPR compatibilizer could improve the impact properties. Above results showed that the processing method is a very important factor in the utilization of red mud as a plastic fillers and master batch is one of the very effective way of red mud addition.

  • PDF

MD simulation of structural change of polyethylene induced by high energy ion bombardment

  • Kim, Chan-Soo;Ahmed, Sk. Faruque;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.358-358
    • /
    • 2010
  • Ion beam bombardment at low energy forms nanosize patterns such as ripples, dots or wrinkles on the surface of polymers in ambient temperature and pressure. It has been known that the ion beam can alter the polymer surface that induces skins stiffer or the density higher by higher compressive stress or strain energies associated with chain scissions and crosslinks of the polymer. Atomic scale structure evolution in polymers is essential to understand a stress generation mechanism during the ion beam bombardment, which governs the nanoscale surface structure evolution. In this work, Molecular Dynamics (MD) simulations are employed to characterize the phenomenon occurred in bombardment between the ion beam and polymers that forms nanosize patterns. We investigate the structure evolution of Low Density Polyethylene (LDPE) at 300 K as the polymer is bombarded with Argon ions having various kinetic energies ranging from 100 eV to 1 KeV with 50 eV intervals having the fluence of $1.45\;{\times}\;1014 #/cm2$. These simulations use the Reactive Force Field (ReaxFF), which can mimic chemical covalent bonds and includes van der Waals potentials for describing the intermolecular interactions. The results show the details of the structural evolution of LDPE by the low energy Ar ion bombardment. Analyses through kinetic and potential energy, number of crosslinks and chain scissions, level of local densification and motions of atoms support that the residual strain energies on the surface is strongly associated with the number of crosslinks or scissored chains. Also, we could find an optimal Ar ion beam energy to make crosslinks well.

  • PDF

Properties of LDPE Composite Films Using Polyurushiol (YPUOH) for Functional Packaging Applications (폴리우루시올(YPUOH)을 이용한 기능성 패키징용 LDPE 복합필름의 특성분석에 관한 연구)

  • Jung, Suyeon;Kim, Dowan;Seo, Jongchul
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • Lacquer sap extracted from lacquer trees exhibits good thermal stabilities and antimicrobial properties. To apply these superior properties to functional packaging, polyurushiol (YPUOH) powders were prepared and blended into LDPE (low density polyethylene) to prepare three different LDPE/YPUOH composite films via a twin screw extruder system. Their morphology, thermal and antimicrobial properties as well as barrier properties of the LDPE/YPUOH composite films were thoroughly investigated to find out applicablities of the films as functional packaging materials. Although the interfacial interaction between LDPE and YPUOH was relatively weak, LDPE/YPUOH composite films exhibited good dispersion of YPUOH in LDPE, resulting in the enhanced thermal stability with YPUOH loading. Due to the good antibacterial property of as-prepared YPUOH, LDPE/YUOH composite films also showed an excellent antibacterial activity (R) of 99.9% against E. coli. Furthermore, the moisture barrier property of LDPE/YPUOH composite films increased with increasing YPUOH contents. Incorporating the relatively low amount of YPUOH in LDPE resulted in the apparent enhancement in thermal stabilities, antibacterial and moisture barrier properties, which made them promising candidates as a functional filler for packaging materials.