• Title/Summary/Keyword: Low curing temperature

Search Result 311, Processing Time 0.024 seconds

Fast Switching of Vertically Aligned Liquid Crystals by Low-Temperature Curing of the Polymer Structure

  • Park, Byung Wok;Oh, Seung-Won;Kim, Jung-Wook;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2014
  • We proposed a method for fast turn-off switching of a vertically-aligned liquid crystal cell by low-temperature curing of the polymer structure. We confirmed that the turn-off times of the fabricated cells were reduced significantly as the curing temperature was lowered to $-20^{\circ}C$. We accounted for the effect of low-temperature curing on the turn-off time by using a mathematical model and by observing images obtained via scanning electron microscopy. We also confirmed that low-temperature curing is more effective in reducing the response time when the device is operated at a low temperature.

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

A Study on the Improvement of Thermal Curing Performance of Concrete Using Hot Air Blower (열풍기 이용 콘크리트 보온양생 성능 개선 방안 분석)

  • Choi, Ji-Su;Kim, Sang-Yeop;Song, Jin-Hee;Cho, Hong-Beom;Rhee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.239-240
    • /
    • 2022
  • In winter, low outdoor temperature can casue reduction of concrete strength. Therefore, thermal protection is required when curing concrete in winter to maintain a certain level or higher surface temperature. Accordingly, in domestic construction sites, a curing method in which surrounds casting areas by tents and operates hot air blowers are widely applied. However, local low-temperature areas may occur due to airtightness of the curing tents. If additional heat is supplied to prevent occurrence of local low-temperature areas, energy consumption increases. Therefore in this study, a plan for improvement method of concrete curing was considered and the performance was evaluated through numerical analysis. A plan to improve the airtightness of the wall opening was applied, but the analysis showed that if only a part of the curing area is shielded, the temperature of the unshielded area decreases,making it inappropriate to improve curing performance.

  • PDF

Estimation of the Compressive Strength of the Concrete incorporating Mineral Admixture based on the Equivalent Age Method (등가재령방법에 의한 혼화재 종류별 콘크리트의 압축강도 증진해석)

  • Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.71-77
    • /
    • 2007
  • This paper is to investigate the effect of the curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of the compressive strength of the concrete was conducted using the equivalent age equation and the rate constant model proposed by Carino. Correction of Carino model was studied to secure the accuracy of strength development estimation by introducing correction factors regarding rate constant and age. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of BS has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

Estimation of Compressive Strength of Concrete Incorporating Admixture (혼화재 치환 콘크리트의 압축강도 증진해석)

  • Joo Eun-Hee;Pei Chang-Chun;Han Min-Cheol;Sohn Myoung-Soo;Jeon Hyun-Gyu;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • This raper investigates the effect of curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of compressive strength of concrete was conducted using equivalent age equation and rate constant model. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of 35 has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

  • PDF

Setting Time and Strength of Slip-form Method Applied Caisson in Low-temperature Period (슬립폼공법 적용된 동절기 케이슨의 온도에 따른 응결시간 및 압축강도)

  • Kim, Bong-Joo;Kim, Jae-Hun;Kim, Chan-Soo;Jo, Ho-Kyoo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2006
  • In the harbor construction work, caisson is made by slip-form method and curing temperature of caisson concrete need heating in the low-temperature. To get the setting time and compression strength of slip-form method applied caisson at various curing temperature. The curing temperature is divided to the temperature of slip-form and the temperature of second curing curtain. In consideration of setting time, compression strength of concrete and form-removal time, the best temperature is $25^{\circ}C$ at 6 hours slip-form curing time.

An Experimental Study on the Characteristics of Compressive Strength in Cement Mortar under High Temperature conditions in an Early Age (초기 고온이력이 시멘트 모르터의 강도발현에 미치는 영향에 관한 연구)

  • Kim Young-Joo;Choi Maeng-Ki;Gong Min-Ho;Park Hee-Gon;Kim Kwang-Ki;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.45-48
    • /
    • 2005
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of qualify control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash (양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향)

  • Han, Min-Cheol;Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

Cure Behavior of a DGEBF Epoxy using Asymmetric Cycloaliphatic Amine Curing Agent (비대칭 고리형 지방족 아민 경화제를 이용한 DGEBF 계열 에폭시의 경화 거동)

  • Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.200-204
    • /
    • 2008
  • The curing kinetics of diglycidyl ether of bisphenol F (DGEBF) with an asymmetric cycloaliphatic amine curing agent were examined by thermal analysis in both isothermal and dynamic curing conditions. From the residual curing of the samples partially cured in isothermal condition and from the dynamic curing with various heating rates, it was found that there exist two kinds of reactions such as at low temperature and at high temperature regions. It was thus also found that the cure parameters obtained from the isothermal curing kinetic model hardly estimate experimental results for a degree of cure larger than 0.6. The activation energies and frequency factors of these two kinds of reactions were obtained from the dynamic curing experiments with various heating rates. From the curing analysis, it was verified that the total cure kinetics for low degrees of cure is dominated by the cure reaction in the low temperature region.

An Effects of the Strength Development of High Strength Mortar under Temperature History by Steam Curing (촉진양생에 의한 온도이력이 고강도 모르타르의 강도발현에 미치는 영향)

  • Kwon, Hee-Sung;Choi, Eung-Kyu;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.115-121
    • /
    • 2008
  • The present study performed low-pressure steam curing with mortar specimens in order to examine the temperature profile and strength development of steam curing in high-strength specimens of 100MPa. In addition, as a basic research to utilize PC products, we examined the effects of curing temperature and time in steam curing cycle on strength development resulting from the hydration of cement within the range of high strength by changing four factors affecting the quality of PC displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature - in various patterns, and analyzed the optimal strength development characteristic based on the relation between temperature profile and strength development. With regard to the high-temperature curing characteristic of PC, we performed an experiment on the strength characteristic according to the temperature profile of high-strength mortar, and from the results of the experiment according to curing characteristic, displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature, we drew conclusions as follows.