• Title/Summary/Keyword: Low band gap

Search Result 306, Processing Time 0.022 seconds

Effect on Al Concentration of AlGaAs Ternary Alloy (AlGaAs합금의 Al 도핑농도에 대한 효과)

  • Kang, B.S.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.125-129
    • /
    • 2021
  • We investigated the electronic property and atomic structure for chalcopyrite (CH) AlxGa1-xAs semiconductor by using first-principles FPLMTO method. The CH-AlxGa1-xAs exhibits a p-type semiconductor with a direct band-gap. For low Al concentration unoccupied hole-carriers are induced, but for high Al concentration it is formed a localized bonding or anti-bonding state below Fermi level. The hybridization of Al(3s)-Ga(4s, or 4p) is larger than that of Al(3s)-As(4s, or 4p). And the Al film on As-terminated surface, Al/AsGa(001), is more energetically favorable one than that on Ga-terminated (001) surface. Consequently, the band-gap of CH-AlxGa1-xAs system increases exponentially with increasing Al concentration. The change of lattice parameter is shown two different configurations with increasing Al concentration. The calculated lattice parameters for CH-AlxGa1-xAs system are compared to the experimental ones of zinc-blend GaAs and AlAs.

Synthesis and Photovoltaic Properties of Low Band Gap π-conjugated Polymers Based on 2-pyran-4-ylidene-malononitrile Derivatives (2-pyran-4-ylidene-malononitrile을 기본으로 하는 작은 Band Gap을 가지는 공중합체의 합성 및 광전변환 특성)

  • You, Hyeri;Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Lim, Jun Heok;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.273-278
    • /
    • 2009
  • A series of poly[2-(2,6-dimethylpyran-4-ylidene)malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PM-PPV), poly[2-{2,6-Bis-[2-(5-bromothiophen-2-yl)-vinyl]-pyran-4-ylidene}-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMT-PPV) and poly[2-[2,6-Bis-(2-{4-[(4-bromophenyl)-phenylamino]-phenyl}-vinyl)-pyran-4-ylidene]-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMTPA-PPV) were synthesized by the Heck coupling reaction. The band gap of PM-PPV, PMT-PPV and PMTPA-PPV were 2.18 eV, 1.90 eV and 2.07 eV, respectively. The LUMO energy levels of PM-PPV, PMT-PPV and PMTPA-PPV were 3.65 eV, 3.54 eV and 3.62 eV, respectively and the HOMO energy levels of those were 5.83 eV, 5.61 eV and 5.52 eV, respectively. The photovoltaic devices based on the polymers was fabricated. The efficiency of the solar cells based on PM-PPV, PMT-PPV and PMTPA-PPV were 0.028%, 0.031% and 0.11%, respectively and the open circuit voltage (Voc) was 0.59 V~0.69 V under AM 1.5 G and 1 sun condition ($100mA/cm^2$).

Application of GaAs Discrete p-HEMTs in Low Cost Phase Shifters and QPSK Modulators

  • Kamenopolsky, Stanimir D.
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.307-314
    • /
    • 2004
  • The application of a discrete pseudomorphic high electron mobility transistor (p-HEMT) as a grounded switch allows for the development of low cost phase shifters and phase modulators operating in a Ku band. This fills the gap in the development of phase control devices comprising p-i-n diodes and microwave monolithic integrated circuits (MMICs). This paper describes a discrete p-HEMT characterization and modeling in switching mode as well as the development of a low-cost four-bit phase shifter and direct quadrature phase shift keying (QPSK) modulator. The developed devices operate in a Ku band with parameters comparable to commercially available MMIC counterparts. Both of them are CMOS compatible and have no power consumption. The parameters of the QPSK modulator are very close to the requirements of available standards for satellite earth stations.

  • PDF

The Physicochemical and Optical Characteristics of FeaSibCcHd Films (FeaSibCcHd 박막의 물리·화학 및 광학적 특성)

  • Kim, Kyung-soo;Jean, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • When the preparation method of iron silicide films possess the annealing process, the interfacial state of the films is not fine. The good quality films were obtained as the plasma was used without annealing processing. Since the injected precursors were various active species in the plasma state, the organic compound was contained in the prepared films. We confirmed the formation of Fe-Si bonds as well as the organic compound by Fe and Si vibration mode in Raman scattering spectrum at $250cm^{-1}$ and Ft-IR. Because of epitaxy growth being progressed by the high energy of plasma at the low temperature of substrate, iron silicide was epitaxially grown to ${\beta}$-phase that had lattice structure such as [220]/[202] and [115]. Band gap of the prepared films had value of 1.182~1.174 eV and optical gap energy was shown value of 3.4~3.7 eV. The Urbach tail and the sub-band-gap absorptions were appeared by organic compound in films. We knew that the prepared films by plasma were obtained a good quality films because of being grown single crystal.

  • PDF

Low Pass Filter Design using the SRR-DGS Resonator (SRR-DGS 공진기를 이용한 저역통과 필터 설계)

  • Kim, Jong-Hwa;Kim, Gi-Rae;Kim, Sung-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.257-262
    • /
    • 2015
  • In this paper, the split-ring DGS resonator is proposed and its equivalent circuit are analyzed to design the low pass filter. Compared with the conventional dumbell DGS cell, this structure has a flat fluctuation in low frequency range and a sharp slop at edge frequency. The out-band suppression of the SRR-DGS cell can be improved by placing the open stubs on the conductor line which operates as parallel capacitances. Making use of equivalent circuit analytical method, the characteristics of the improved SRR DGS cell are investigated and applied to design compact low pass filter, which has a low in-band loss, sharp slop and high suppression of more than 35dB within a wide out-band frequency range. The dependence of the transmission characteristic on the dimension of a split ring, such as side-length and split-gap, is analyzed in detail. In addition, an improved SRR DGS cell model with open stubs loaded on the conductor line is then presented to improve the out-band suppression. By using the equivalent-circuit analytical method, an S-band microstrip low-pass filter with perfect low-pass characteristic and high out-band suppression is designed and fabricated.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

CdSe Sensitized ZnO Nanorods on FTO Glass for Hydrogen Production under Visible Light Irradiation (가시광 수소생산용 CdSe/ZnO nanorod 투명전극)

  • Kim, Hyun;Yang, Bee Lyong
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The ZnO is able to produce hydrogen from water however it can only absorb ultraviolet region due to its 3.37eV of wide band gap. Therefore efficiency of solar hydrogen production is low. In this work we report investigation results of improved visible light photo-catalytic properties of CdSe quantum dots(QDs) sensitized ZnO nanorod heterostructures. Hydrothermally vertically grown ZnO nanorod arrays on FTO glass were sensitized with CdSe by using SILAR(successive ionic layer adsorption and reaction) method. Morphology of grown ZnO and CdSe sensitized ZnO nanorods had been investigated by FE-SEM that shows length of $2.0{\mu}m$, diameter of 120~150nm nanorod respectively. Photocatalytic measurements revealed that heterostructured samples show improved photocurrent density under the visible light illumination. Improved visible light performance of the heterostructures is resulting from narrow band gap of the CdSe and its favorable conduction band positions relative to potentials of ZnO band and water redox reaction.

Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps (극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계)

  • Choi, Myung-Jin;Oh, Myung-Hoon;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • A band gap refers to a certain frequency range where the propagation of mechanical waves is prohibited. This work focuses on engineering three-dimensional Kelvin lattices having external band gaps at low audible frequency ranges using a gradient-based design optimization method. Elastic wave propagation in an infinite periodic lattice is investigated by employing the Bloch theorem. We model the ligaments using a shear-deformable beam model obtained by consistent linearization in a geometrically exact beam theory. For a given lattice topology, we enlarge band gap sizes by controlling the configuration of the beam neutral axis and cross-section thickness that are smoothly parameterized by B-spline basis functions within the isogeometric analysis framework.

Synthesis and Characterization of Phenylene-Thiophene-Thieno[3,4-b]pyrazine Oligomer (Phenylene-Thiophene-Thieno[3,4-b]pyrazine 올리고머의 합성과 특성)

  • Hwang, Mi-Lim;Li, Ji-Cheng;Seo, Eun-Ok;Lee, Soo-Hyoung;Lee, Youn-Sik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.95-100
    • /
    • 2011
  • During the development of low band-gap organic materials(p-type semiconducting organic compounds) for organic solar cells, an oligomer consisting of 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT), and 2,3-dimethylthieno[ 3,4-b]pyrazine(TP) as repeat units, oligo(OP-HT-TP), was synthesized. The oligomer was amorphous in nature in the temperature range studied, and well soluble in common organic solvents such as chloroform. The maximum absorption wavelength was 716 nm in solid state. The band-gap and HOMO/LUMO energy levels of oligo(OP-HT-TP) were measured to be 1.20 eV and -5.27/4.04 eV, respectively. However, the absorbance of the oligomer at maximum absorption wavelength was less than one fifth of that of poly(3-hexylthiophene) which has been most frequently used in fabrication of organic solar cells.