Effect on Al Concentration of AlGaAs Ternary Alloy

AlGaAs합금의 Al 도핑농도에 대한 효과

  • Kang, B.S. (Nanotechnology Research Center, Nano-science & Mechanical Engineering, Konkuk University)
  • 강병섭 (건국대학교 글로컬 캠퍼스 과학기술대학 나노전자기계공학)
  • Received : 2021.11.29
  • Accepted : 2021.12.16
  • Published : 2021.12.31

Abstract

We investigated the electronic property and atomic structure for chalcopyrite (CH) AlxGa1-xAs semiconductor by using first-principles FPLMTO method. The CH-AlxGa1-xAs exhibits a p-type semiconductor with a direct band-gap. For low Al concentration unoccupied hole-carriers are induced, but for high Al concentration it is formed a localized bonding or anti-bonding state below Fermi level. The hybridization of Al(3s)-Ga(4s, or 4p) is larger than that of Al(3s)-As(4s, or 4p). And the Al film on As-terminated surface, Al/AsGa(001), is more energetically favorable one than that on Ga-terminated (001) surface. Consequently, the band-gap of CH-AlxGa1-xAs system increases exponentially with increasing Al concentration. The change of lattice parameter is shown two different configurations with increasing Al concentration. The calculated lattice parameters for CH-AlxGa1-xAs system are compared to the experimental ones of zinc-blend GaAs and AlAs.

Keywords

Acknowledgement

본 연구는 원활한 수행을 위하여 건국대학교 글로컬캠퍼스 나노기계전자공학과의 지원이 있었다(2021년).

References

  1. D. N. Talwar, "Assessment of microscopic lattice structures in dilute (AlGaIn)NAs laser materials by local mode spectroscopy and numerical simulations", Journal of Applied Physics 99, pp.123505-1, 2006. https://doi.org/10.1063/1.2205353
  2. H. C. Casey Jr., M. B. Panish, Heterostructure Lasers, Academic Press, New York, 1978.
  3. Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, G. Ronald Hadley, "Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers", IEEE Journal of Quantum Electronic 33, pp.1810, 1997. https://doi.org/10.1109/3.631287
  4. W. Lu, R. P. Campion, C. T. Foxon, E. C. Larkins, "A theoretical model for the MBE growth of AlGaAsN using ammonia as the N source", Journal of Crystal Growth 312, pp.1029, 2010. https://doi.org/10.1016/j.jcrysgro.2010.01.004
  5. O. K. Andersen, "Linear methods in band theory", Phys. Rev. B 12, pp.3060,1975. https://doi.org/10.1103/PhysRevB.12.3060
  6. S. Y. Savrasov, "Linear-response theory and lattice dynamics: A muffin-tin-orbital approach", Phys. Rev. B54, pp.16470,1996, and references therein. https://doi.org/10.1103/PhysRevB.54.16470
  7. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett. 77, pp.3865-3868,1996. https://doi.org/10.1103/PhysRevLett.77.3865
  8. S. M. Sze, "Physics of semiconductor devices", 2nd Ed., John Wiley & Sons, New York, 1985.
  9. Sadau Adachi, "Physical Properties of III-V Semiconductor Compounds", John Wiley & Sons, New York, 1992.
  10. Sadao Adachi, "Optical Constants of Crystalline and Amorphous Semiconductors", Kluwer Academic, Boston, 1999.
  11. Boualem Merabet, Hamza Abid, Nadir Sekkal, "First principles investigation of optical properties of zincblende AlxGa1-xAs1-yNy materials", Physica B, 406, pp.930-935, 2011. https://doi.org/10.1016/j.physb.2010.12.030