• Title/Summary/Keyword: Low Temperature Waste Heat

Search Result 125, Processing Time 0.021 seconds

Simulation of the Kalina cycle for a Geothermal Power Generation (지열발전을 위한 칼리나 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Park, Seong-Ryong;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.782-787
    • /
    • 2008
  • The Kalina cycle simulation study was carried out for a preliminary design of a geothermal power generation system. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The simulation results show that the power generation efficiency over 10% is expected when a heat source and sink inlet temperatures are $100^{\circ}C$ and $10^{\circ}C$ respectively.

  • PDF

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

An Experimental Study on the Organic Rankine Cycle to Utilize Fluctuating Thermal Energy (가변열원에 대응하기 위한 ORC 사이클의 실험적인 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2015
  • The system design of the Organic Rankine Cycle(ORC) is greatly influenced by the thermal properties such as the temperature or the thermal capacity of heat source. Typically waste heat, solar energy, geothermal energy, and so on are used as the heat source for the ORC. However, thermal energy supplying from these kinds of heat sources cannot be provided constantly. Hence, an experimental study was conducted to utilize fluctuating thermal energy efficiently. For this experiment, an impulse turbine and supersonic nozzles were applied and the supersonic nozzle was used to increase the velocity at the nozzle exit. In addition, these nozzles were used to adjust the mass flowrate depending on the amount of the supplied thermal energy. The experiment was conducted with maximum three nozzles due to the capacity of thermal energy. The experimented results were compared with the predicted results. The experiment showed that the useful output power could be producted from low-grade thermal energy as well as fluctuating thermal energy.

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

An Experimental Study on the Fry Drying of Low-rank Coal with a High Moisture Content (유중 건조법에 의한 고수분 저품위탄 건조 실험)

  • Moon, Seung-Hyun;Kim, Yong-Woo;Ryu, In-Soo;Lee, Seung-Jae
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.213-220
    • /
    • 2009
  • The experimental characteristics for fry drying method was investigated using low-rank coal with a high moisture content. Final temperature, mixing ratio between coal and kerosene, content of coal or kerosene, total weight of the mixture and mixing methods were varied to find out the optimum conditions by measuring moisture of coal. Evaporation of the coal moisture was not completed below $120^{\circ}C$ of final temperature. The amount of moisture was not significantly different over $130^{\circ}C$. Coal moisture was easily evaporated by increasing coal content, which showed that the moisture evaporation could be significantly enhanced by the remove of evaporated moisture from kerosene rather than by heat transfer to the coal. High total weight of the mixture resulted in lowering moisture content of coal with long evaporation time. On the other hand, low total weight was difficult to reduce the moisture below a certain level, but could reduce evaporation time. Thus, it can concluded that kerosene content should be lowered to the extent maintaining the mobility of the mixture in order to enhance evaporation. It was also observed that evacuation and mixing by using nitrogen could improve drying of coal.

Composition of the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 구성)

  • Sim, K.S.;Myoung, K.S.;Kim, J.W.;Han, S.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 1999
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3-5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic and endothermic reaction. After releasing hydrogen from metal hydride with heatings by waste heat from industry we can transport this hydrogen to the rural area via pipe line. In the urban areas other metal hydride reacts with this hydrogen and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. So metal hydride can be used as a media for transportation, storage of heat. Some problems of the heat transportation using metal hydrides, and the example of heat transportation system were discussed.

  • PDF

Simulation of the effect of working fluids on the horizontal tube condenser (작동유체가 수평관형 응축기 성능에 미치는 영향에 관한 모사)

  • Jun, Yong-Du;Lee, Kum-Bae;O, Gyu-Nam;Kim, Jin-Kyong;Park, Ki-Ho;Chung, Dae-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.281-285
    • /
    • 2008
  • Effective use of available energy sources is of general concern along with the issues of global warming and unstable oil price. As one of the effort to recover waste heat from industrial facilities effectively, researchers have interest in a technology called organic Rankine cycle(ORC), in which the working fluid is some organic liquid instead of water. Known to have poor efficiency already, this old technology is considered to give an innovative solution to utilizing low grade energy sources, by improving the efficiency. Nano fluidics, coatings and the use of additives are the examples of these efforts. In the present study, we present simulated performance of a horizontal tube type condenser geometry. N-hexanr and isopentane are compared to water vapor case under 1 atm and the inet cooling water temperature of $20^{\circ}C$. EES(Engineering Equations Solver) is used for the present work.

  • PDF

Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine (선박용 디젤엔진의 배기가스에 적용된 3 변 사이클의 열역학적 분석)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.937-944
    • /
    • 2012
  • The thermodynamic characteristics of a trilateral cycle with water as a working fluid have been theoretically investigated for an electric generation system to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when a heat source was given, the efficiencies of energy and exergy were maximized by the specific conditions of the pressure and mass flow rate for the working fluid at the turbine(expander) inlet. In this case, as the condensation temperature increased, the volume expansion ratio of the turbine could be reduced properly; however, the exergy loss of the heat source and exergy destruction of the condenser increased. Therefore, in order to recover the waste exergy from the topping cycle, the combined cycle with a bottoming cycle such as an organic Rankine cycle, which is utilized at relatively low temperatures, was found to be useful.

A study on the fixed-concentrating hybrid panel using reflector (반사판을 이용한 고정식 집속형 복합 Panel에 대한 연구)

  • Kim, Kiu-Jo;Kim, Seung-Whan;Yoo, Hung-Chul;Kim, Wan-Tae;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.463-466
    • /
    • 2001
  • The most effective methods of utilizing solar energy are to use the sunlight and solar thermal energy such as hybrid panel simultaneously and to use concentrator. From such a view point, systems using various kinds of photovoltaic panels were constructed in the world. However there have not been a type of panel using concentrator and hybrid simultaneously. If the sunlight are concentrated on the solar cell, cell conversion efficiency increase and the temperature of the solar cells increases. As the temperature of the solar cells increases, so cell conversion efficiency decreases. Therefore, for maintaining cell conversion efficiency at these conditions, it is necessary to keep the cell at low temperature. In this paper, after designing a concentrate rate for concentrating, we proposed model for cooling cell and using waste heat, and we compared with conventional panels after calculating the electrical and thermal efficiency using energy balance equation.

  • PDF

Research on Improving Drying Technology For Sewage Waste Using Direct Flotation Using Heat Storage Media (축열메디아 활용 직접부상방식을 이용한 하수찌꺼기의 건조기술 향상에 관한 연구)

  • Sung-Il Noh;Ung-Yong Kim;Sung-Gyun Jo;Hyun-Gon Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • This study was conducted to improve energy efficiency and problems such as clumping and fouling in the glue zone that occur in the moisture content range of 40 to 60% when sewage dehydration residue is directly fed into the dryer. The temperature of the hot air is low at 270~300℃, and the paddle-type flotation method and dehydrated residue are applied to the circulated heat storage media to increase the contact area with the hot air, thereby reducing energy recovery and gas emissions. The water content of the dried residue is 2.7. ~7 .5%, the heat of evaporation of moisture was 608.0~690.6 kcal/kg·H2O, which confirmed an energy saving effect of about 8.8% compared to the heat of evaporation of moisture of 714.5 kcal/kg·H2O when no heat storage media was used.