• Title/Summary/Keyword: Low Temperature Performance

Search Result 2,081, Processing Time 0.03 seconds

A Study on the Improvement of Efficiency of Heat Transfer on the Heat Recovery Ventilator with Rotating Porous Disk (로터리형 폐열회수 환기장치의 열전달 성능 향상에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1352-1357
    • /
    • 2014
  • In the present study, the heat transfer performance on the heat recovery ventilator with rotary disk were experimentally investigated. The temperature of entrance and exit of the heat recovery ventilator, air flow distribution of high temperature air and low temperature air, heat flux and the overall heat transfer coefficients are estimated from the experimental results. As the number of revolution of rotary disk, the air flow distribution increase, heat flux and overall heat transfer coefficients increase.

A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater (자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구)

  • Juen, H.Y.;Lee, C.K.;Bae, H.J.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF

A Study on the Effects of Heating of Fuel Oil on Combustion Characteristics and Engine Performance (연료유 가열이 디젤기관의 연소특성 및 기관성능에 미치는 영향에 관한 연구)

  • 고대권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.82-86
    • /
    • 1989
  • This paper is concerned with the effects of temperature of diesel fuel on combustion characteristics and engine performance in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The fuel injection timing was delayed with increase in temperature for diesel fuel, and remarkably delayed at low load. 2. The point of maximum pressure was delayed with increase in temperature for diesel fuel, the maximum pressure decreased with increase in temperature for diesel fuel but increased with increase in load. 3. The brake specific fuel comsumption (BSFC) decreased with increase in load, the optimum temperature of the heated fuel was about 15$0^{\circ}C$. 4. The smoke emissions increased with increase in load and temperature for diesel fuel.

  • PDF

Characteristics of Hybrid Optical Pickup Actuator at High Temperature (하이브리드형 광픽업 액추에이터의 고온특성)

  • Lee, Jin-Won;Kim, Kwang;Cheong, Young-Min;Kim, Dae-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1010-1014
    • /
    • 2002
  • A new type actuator has been designed and investigated to overcome thermal problems in slim optical disc drive which is adopted in mobile storage devices. Recently, in optical storage device technical trends, the size of optical disc drives is slimmer to adopt notebook computer and the spindle rotate velocity is faster to achieve high transfer rate and the power of actuator is higher to perform tilting, etc. However, these trends of optical disc drives tend to raise the environment temperature of drives, actuator power and parts temperature. Moreover, it is more difficult to remove the heat inside a drive and the temperature of an actuator increases and drive slims. As a result, increase of surface temperature of actuator body caused that second resonance of an actuator moves down to a lower frequency band and the performance of optical parts also deteriorates. Especially objective lens, coil and magnet of the actuator parts are easily damaged. To manage these thermal problems, in this paper an actuator with a hybrid blade, which is composed of vectra which has low thermal conductivity and magnesium which has high thermal conductivity, has been suggested and verified. Despite the high temperature environment, the proposed actuator showed good dynamic performance.

  • PDF

Improvement of Condensation Performance in Corridor Type Apartment Door

  • Lee, Sungbok;Hwang, Hajin
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • Condensation has mainly occurred in corridor type apartment door which is exposed to the outside air and is made of steel, which has high thermal conductivity. As a result, the total costs of repair have increased with the number of disputes with residents. In this study, therefore, we investigate materials and construction methods used in apartment door, perform a computer simulation to find out possible improvements, and then suggest the dew point to prevent the occurrence of condensation throughout simulation. The results indicate that the temperature that condensation does not occur is $15.4^{\circ}C$, and the optimum method of achieving this dew point is shown to be a door frame system including a large vertical slot to decrease the area of thermal conduction between the outer and inner portions of the door frame. Mock-up tests show that the surface temperature of the door frame was higher than the dew point, and the system can withstand severe cold conditions of $-20^{\circ}C$. In application test, the surface temperature of door frame with vertical slots is $5.9^{\circ}C$in average, which is higher than the existing door frame. Furthermore, in the temperature distribution of the surrounding door measured with infrared ray camera, the existing door shows the high temperature distribution indicating lack of insulation, but the improved door shows the low temperature distribution indicating higher insulation.

Computer Simulation of an Absorption Heat Pump for Recovering Low Grade Waste Heat (저온 폐열 회수를 위한 제1종 흡수식 열펌프의 컴퓨터 시뮬레이션)

  • Karng, S.W.;Kang, B.H.;Jeong, S.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-197
    • /
    • 1996
  • A computer program for thermal design analysis has been developed to predict the operating characteristics and performance of an absorption heat pump to recover $30{\sim}40^{\circ}C$ of waste hot water. The effects of heat transfer area of the system components, temperature and mass flow rate of heat transfer medium, and solution circulation rate on the system performance are investigated in detail. The results obtained indicate that the COP is increased with a decrease in the temperature of driving steam and with an increase in the temperature of waste hot water while the COP is little affected by the variation of a hot water temperature. It is also found that the heating output is increased with an increase in the temperature of waste hot water and driving steam as well as with a decrease in the temperature of hot water. The simulation results are also compared with the experimental results for a periodic operation of the system and obtained a satisfactory agreement.

  • PDF

Analysis on Visual Perception and Mood for Color of Light in a Small Office (소규모 사무실의 조명 색 변화에 따른 시각적 감지 및 무드 변화 분석)

  • Kang, Min-Hye;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • This study examines the influences of correlated color temperature and illuminance on visual perception and temporary mood sensation in a small office. Field measurements and surveys were conducted in a full-scale mock-up model. Twenty subjects participated in the survey under six lighting conditions formed by three color temperature and two illuminance levels. Results indicate that 4000 K color temperature was effective to mitigate glare sensation from light source. Lamps with low color temperature such as 2700 K was not recommended for office lighting since they are likely to caused glare and visual discomfort. Preferred color temperature was 4000 K and 6500 K for 750 lx and 500 lx target illuminance respectively. The increase of illuminance was not an effective contributor to improve mood perception. The illuminance should be lower than 500 lx to achieve good mood, but the illuminance level in office space should be considered with visual performance simultaneously. This study suggests that fluorescent lighting fixtures with 4000 K lamps would be usefully used for office lighting since they formed friendly conditions for better visual performance.

Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments (실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구)

  • Kim, Jintae;Kim, Minjin;Sohn, Youngjun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구)

  • Joo, Hong-Jin;Jeon, Yong-Han;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

Performance Characteristics of Cascade Refrigeration System Using R744 and R410A (R744-R410A용 이원 냉동시스템 성능 특성)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1548-1554
    • /
    • 2013
  • This paper presents the analysis on performance characteristics of R744-R410A cascade refrigeration system to offer the basic design data for the operating parameters of this system. The performance of cascade refrigeration system is analyzed by using EES program. The operating parameters include compressor efficiency, and condensing and evaporating temperature in R410A high- and R744 low-temperature cycle, respectively. The COP of this system increases with the decrease of condensing temperature, and increases with the increasing evaporating temperature. And the COP of this system increases with the compression efficiency. Therefore, it can be seen that the compression efficiency, and evaporating and condensing temperature of R744-R410A cascade refrigeration system have an effect on the COP of this system. Also, it can be known that the cascade evaporation temperature with the highest efficiency in each parameter is present. Thus, it is an important to design R744-R410A cascade refrigeration system by considering these parameters.