• 제목/요약/키워드: Low Temperature Performance

검색결과 2,081건 처리시간 0.033초

Development plan for a persistent 1.3 GHz NMR magnet in a new MIRAI project on joint technology for HTS wires/cables in Japan

  • Yanagisawa, Y.;Suetomi, Y.;Piao, R.;Yamagishi, K.;Takao, T.;Hamada, M.;Saito, K.;Ohki, K.;Yamaguchi, T.;Nagaishi, T.;Kitaguchi, H.;Ueda, H.;Shimoyama, J.;Ishii, Y.;Tomita, M.;Maeda, H.
    • 한국초전도저온공학회지:초전도와저온공학
    • /
    • 제20권2호
    • /
    • pp.15-22
    • /
    • 2018
  • The present article briefly overviews the plan for a new project on joint technology for HTS wires/cables and describes the development plan for the world's highest field NMR magnet, which is a major development item in the project. For full-fledged social implementation of superconducting devices, high temperature superconducting (HTS) wire is a key technology since they can be cooled by liquid nitrogen and they can generate a super-high magnetic field of >>24 T at liquid helium temperatures. However, one of the major drawbacks of the HTS wires is their availability only in short lengths of a single piece of wire. This necessitates a number of joints being installed in superconducting devices, resulting in a difficult manufacturing process and a large joint resistance. In Japan, a large-scale project has commenced, including two technical demonstration items: (i) Development of superconducting joints between HTS wires, which are used in the world's highest field 1.3 GHz (30.5 T) NMR magnet in persistent current mode; the joints performance is evaluated based on NMR spectra for proteins. (ii) Development of ultra-low resistive joints between DC superconducting feeder cables for railway systems. The project starts a new initiative of next generation super-high field NMR development as well as that of realization of better superconducting power cables.

  • PDF

Development and Ergonomic Evaluation of Spring and Autumn Working Clothes for Livestock Farming Workers

  • Kim, Insoo;Lee, Kyung-Suk;Seo, Min-Tea;Chae, Hye-Seon;Kim, Kyung-Su;Choi, Dong-Phil;Kim, Hyo-Cher
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.343-359
    • /
    • 2016
  • Objective:In this study, we designed working clothes for livestock farmers to wear in spring and autumn to improve their work efficiency, conducted a physiological test on their performance, and evaluated their comfort. Background: In recent years, livestock farming in Korea has expanded, yet farmers' safety and sanitation levels remain low in hazardous environments that include organic dust, toxic gas, and heat stress, as well as the risk of accidents. Furthermore, most livestock farmers wear ordinary or dust-resistant clothes that are unsuitable for rearing livestock and compromise their safety and health. Thus, it is important to design specialized working clothes for livestock farmers that are comfortable and that minimize their health and safety risks. Method: To this end, we examined the literature on livestock (poultry, swine, and cattle) farmers' safety and sanitation issues, designed appropriate working clothes, and tested them in terms of sensory feel, physiological response, and subjective comfort. Results: The respondents expressed satisfaction with the new working clothes. The results of a physiological test showed a decline in temperature and humidity inside the clothes, a lower pulse rate, and a lower oxygen intake compared to the measurements taken when famers wore their previous working clothes. This indicates a fall in heat stress and fatigue, which was mostly consistent with the results of the assessment of subjective comfort. Conclusion: The results of the analysis show an improvement in the comfort of the new working clothes compared to the dust-resistant clothes that are widely worn. Based on this study, the new working clothes need to be further tested and evaluated to improve the design. Application: This study is expected to contribute to designing better working clothes for livestock farmers.

압출 적층 방식의 알루미늄 용융기의 설계 및 해석 (Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method)

  • 이현석;나영민;강태훈;박종규;박태곤
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.

모듈화 구조와 IoT 기반의 광센서리스 태양광 추적 시스템 (Photo-Sensorless Solar Tracking System based on Modular Structure and IoT Technology)

  • 김대원;김정태;정교범
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.392-402
    • /
    • 2020
  • 본 논문은 광센서 없는 태양광 추적 시스템을 제안한다. 태양광 추적, MPPT, ESS, 모니터링의 4가지 기능을 모듈화하여 시스템을 구현하였다. 9개의 태양광 패널을 기본단위로, 바람의 영향을 저감하고, 광센서 없이 태양광 추적이 가능하도록 상하좌우 패널의 높낮이를 다르게 한 격자형 구조를 채택하였다. 저가형 MCU를 이용한 부스트 컨버터 PWM 스위칭을 위해 기존 MPPT의 연산 방법을 개선하였다. ESS 모듈은 리튬 이온 배터리 12개(직렬 3셀과 병렬 4셀)를 기본 단위로 구성하여 온도 및 전기 특성의 이상 유무 감시가 가능하게 하였다. 각 모듈의 MCU는 Atmega128 또는 Raspberry PI로 구성하였으며 운전 정보를 상호 교환하고, IoT 기술을 응용하여 실시간 원격 모니터링과 클라우드에 데이터베이스를 구축하여 유지보수가 가능하게 하였다. 실험을 위해 제작된 태양광 발전 시스템의 운전 데이터는 각 모듈의 분산 및 원격 모니터링의 가능성, 유지보수의 편의성 및 광추적 성능을 증명한다.

고성능 시스템을 위한 클록 분배 방식 및 Coplanar 및 Microstrip 전송라인의 구조적 분석 (A Novel Clock Distribution Scheme for High Performance System and A Structural Analysis of Coplanar and Microstrip Transmission Line)

  • 박정근;문규;위재경
    • 대한전자공학회논문지SD
    • /
    • 제41권4호
    • /
    • pp.1-8
    • /
    • 2004
  • 고속 저전력 디지털 시스템을 위해 클록 스큐를 최소화하고 동적 파워 소모를 줄이는 새로운 클록 분배 방법을 제안하였다. 제안된 방법은 접힌 라인구조(FCL)과 위상 섞임 회로(phase blending circuit)을 이용하여 Zero-skew 특성을 갖는다. FCL에 적합한 라인 구조를 분석하기 위해, 마이크로 스트립과 코플라너 라인을 FCL형 클록 라인으로 분배되었다. 시뮬레이션 결과는 l0㎜ 떨어져 있는 두 리시버 사이의 최대 클록 스큐가 1㎓에서 10psec보다 적고 20㎜ 떨어져 있는 두 리시버 사이의 최대 클록 스큐는 1㎓에서 60 psec보다 작음을 보였다. 또한, 공정, 전압, 온도 변화에 무관하게 클록 신호들의 스큐가 변하지 않음을 알 수 있었다.

600 W급 연료전지(PEMFC)의 설계 및 제작 (Design and Development of 600 W Proton Exchange Membrane Fuel Cell)

  • 김주곤;정현열;;소비 토마스;손병락;;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가 (Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test)

  • 권영진;김재환;한병찬;장승엽
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

LNG 인수기지용 냉열발전 시스템 비교 연구 (A Comparative Study of the Cold Power Generation Systems for LNG Terminal)

  • 김동수;박영무
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.34-41
    • /
    • 1996
  • LNG의 기화열(냉열)은 NG액화시 소모된 동력으로서 생산된 NG의 약 14%에 달한다. 평택 인수기지의 경우 '93도입물량 기준으로 냉열량은 96MW에 달한다. 냉열을 이용하여 전력을 생산하는 방안으로, 저온 엑서지를 활용하는 Rankine 사이클, 압력 엑서지를 이용한 부분직접 팽창 사이클 및 이 두 사이클의 혼합 사이클인 Linde공정 냉열발전시스템의 성능을 비교연구하였다. 시뮤레이션은 ASPEN Plus를 이용하여 수행하였으며 현재 인수기지에서 운영되고 있는 각종 설비들의 설계데이타를 이용하였다. 시스템별 출력은 약 3∼6MW였으며 최적운전조건의 엑서지 효율은 37%로 계산되었다. 또한 부분직접팽창방식의 최적 시스템을 제시하였고 열교환기의 총 면적이 동일 할 경우 부분직접팽창과 랭킨사이클의 성능은 비슷한 것으로 확인되었다.

  • PDF

연료전지 하이브리드 차량의 효율적인 작동을 위한 배터리 충전 시기에 대한 연구 (A Study of Battery Charging Time for Efficient Operation of Fuel Cell Hybrid Vehicle)

  • ;권오정;조인수;현덕수;천승호;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권1호
    • /
    • pp.38-44
    • /
    • 2009
  • Recently, the research focused on fuel cell hybrid vehicles (FCHVs) is becoming an attractive solution due to environmental pollution generated by fossil fuel vehicles. The proper energy control strategy will result in extending the fuel cell lifetime, increasing of energy efficiency and an improvement of vehicle performance. Battery state of charge (SoC) is an important quantity and the estimation of the SoC is also the basis of the energy control strategy for hybrid electric vehicles. Estimating the battery's SoC is complicated by the fact that the SoC depends on many factors such as temperature, battery capacitance and internal resistance. In this paper, battery charging time estimated by SoC is studied by using the speed response and current response. Hybrid system is consist of a fuel cell unit and a battery in series connection. For experiment, speed response of vehicle and current response of battery were determined under different state of charge. As the results, the optimal battery charging time can be estimated. Current response time was faster than RPM response time at low speed and vice versa at high speed.

Importance of Green Density of Nanoparticle Precursor Film in Microstructural Development and Photovoltaic Properties of CuInSe2 Thin Films

  • Hwang, Yoonjung;Lim, Ye Seul;Lee, Byung-Seok;Park, Young-Il;Lee, Doh-Kwon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.471.2-471.2
    • /
    • 2014
  • We demonstrate here that an improvement in precursor film density (green density) leads to a great enhancement in the photovoltaic performance of CuInSe2 (CISe) thin film solar cells fabricated with Cu-In nanoparticle precursor films via chemical solution deposition. A cold-isostatic pressing (CIP) technique was applied to uniformly compress the precursor film over the entire surface (measuring 3~4 cm2) and was found to increase its relative density (particle packing density) by ca. 20%, which resulted in an appreciable improvement in the microstructural features of the sintered CISe film in terms of lower porosity, reduced grain boundaries, and a more uniform surface morphology. The low-bandgap (Eg=1.0 eV) CISe PV devices with the CIP-treated film exhibited greatly enhanced open-circuit voltage (VOC, from 0.265 V to 0.413 V) and fill factor (FF, from 0.34 to 0.55), as compared to the control devices. As a consequence, an almost 3-fold increase in the average power conversion efficiency, 3.0 to 8.2% (with the highest value of 9.02%), was realized without an anti-reflection coating. A diode analysis revealed that the enhanced VOC and FF were essentially attributed to the reduced reverse saturation current density (j0) and diode ideality factor (n). This is associated with the suppressed recombination, likely due to the reduction in recombination sites such as grain/air surfaces (pores), inter-granular interfaces, and defective CISe/CdS junctions in the CIP-treated device. From the temperature dependences of VOC, it was confirmed that the CIP-treated devices suffer less from interface recombination.

  • PDF