• 제목/요약/키워드: Low Resistance Switch

검색결과 51건 처리시간 0.024초

A Novel Switched-Capacitor Based High Step-Up DC/DC Converter for Renewable Energy System Applications

  • Radmand, Fereshteh;Jalili, Aref
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1402-1412
    • /
    • 2017
  • This paper presents a new high step-up dc/dc converter for renewable energy systems in which a high voltage gain is provided by using a coupled inductor. The operation of the proposed converter is based on a charging capacitor with a single power switch in its structure. A passive clamp circuit composed of capacitors and diodes is employed in the proposed converter for lowering the voltage stress on the power switch as well as increasing the voltage gain of the converter. Since the voltage stress is low in the provided topology, a switch with a small ON-state resistance can be used. As a result, the losses are decreased and the efficiency is increased. The operating principle and steady-states analyses are discussed in detail. To confirm the viability and accurate performance of the proposed high step-up dc-dc converter, several simulation and experimental results obtained through PSCAD/EMTDC software and a built prototype are provided.

Optimal Design of Trench Power MOSFET for Mobile Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.195-198
    • /
    • 2017
  • This research analyzed the electrical characteristics of an 80 V optimal trench power MOSFET (metal oxide field effect transistor) for mobile applications. The power MOSFET is a fast switching device in fields with low voltage(<100 V) such as mobile application. Moreover, the power MOSFET is a major carrier device that is not minor carrier accumulation when the device is turned off. We performed process and device simulation using TCAD tools such as MEDICI and TSUPREM. The electrical characteristics of the proposed trench gate power MOSFET such as breakdown voltage and on resistance were compared with those of the conventional power MOSFET. Consequently, we obtained breakdown voltage of 100 V and low on resistance of $130m{\Omega}$. The proposed power MOSFET will be used as a switch in batteries of mobile phones and note books.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

단상 컨버터의 부분공진 회로 (Single-Phase converter with partial resonant circuit)

  • 이현우;곽동걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.129-131
    • /
    • 1993
  • Power conversion system of high performance requires high switching frequency power converter. In order to minimize commutation stress and switching losses, in this paper, AC-DC converter is embedded a partial resonant DC-Link circuit with the object of ZVCS(zero voltage switching and zero current switching). The partial resonant occurs just before converter switch operates. Thus, VA ratings of the elements and their dissipations due to effective series resistance (ESR) are very low. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구 (A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch)

  • 안태영;유정상
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

역률 개선과 출력 전압 조정을 위한 불연속 모드의 승압형 컨버터가 결합된 단일 전력단 포워드-플라이백 컨버터 (DCM Boost Converter Integrated Single-Stage Forward-Flyback Converter for Power Factor Correction and Output Voltage Regulation)

  • 이성세;강정일;구관본;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 2001
  • In this paper, a DCM operated boost integrated single-stage forward-flyback converter is proposed. This proposed converter has high power factor, low harmonic distortion, and tight output regulation. To increase efficiency, zero voltage switching with asymmetrical control is used. This converter also give low voltage stress in switch and this results in low conduction loss with low turn-on resistance.

  • PDF

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.

직접 보상 트랜지스터를 사용하는 고주파 PSR 개선 LDO 레귤레이터 (High-Frequency PSR-Enhanced LDO regulator Using Direct Compensation Transistor)

  • 윤영호;김대정;모현선
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.722-726
    • /
    • 2019
  • 본 논문에서는 고주파 영역에서의 전원잡음제거 (PSR) 특성이 개선된 low drop-out (LDO) 레귤레이터를 제안한다. 특히, PMOS 전력 스위치의 유한한 출력저항을 관통하는 고주파 전원잡음을 상쇄하기 위해 출력저항이 큰 NMOS 트랜지스터를 보상 회로로 추가하였다. 보상 트랜지스터에 의한 전원잡음제거는 해석적으로 설명하여 개선에 대한 방향을 제시하였다. $0.35{\mu}m$ 표준 CMOS 공정으로 회로를 제작하고 Spectre 시뮬레이션을 수행하여 10MHz에서 기존의 LDO 레귤레이터 대비 26dB의 PSR 개선을 확인하였다.

연속전류모드에서 기생손실들을 고려한 고정주파수 LCL형 컨버터 해석 (Analysis of the Fixed Frequency LCL-type Converter at Continuous Current Mode Including Parasitic Losses)

  • 박상은;차한주
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.785-793
    • /
    • 2016
  • This paper analyzes an LCL-type isolated dc-dc converter operating for constant output voltage in the continuous conduction mode(CCM) with resistances of parasitic losses-static drain-source on resistance of power switch, ESR of resonant network(L-C-L)-using a high loaded quality factor Q assumptions and fourier series techniques. Simple analytical expressions for performance characteristics are derived under steady-state conditions for designing and understanding the behavior of the proposed converter. The voltage-driven rectifier is analyzed, taking into account the diode threshold voltage and the diode forward resistance. Experimental results measured for a proposed converter at low input voltage and various load resistances show agreement to the theoretical performance predicted by the analysis within maximum 4% error. Especially in the case of low output voltages and large loads, It is been observed that introduction of both rectifier and the parasitic components of converter had considerable effect on the performance.