• Title/Summary/Keyword: Low Quality Fresh Ginseng

Search Result 24, Processing Time 0.028 seconds

Enhancement of Anticancer Activities of Low Quality Ginseng by Phelinus linteus Fermentation (상황 균사체 배양에 의한 파삼의 항암 활성 증진)

  • Ha, Ji-Hye;Jeong, Myeong-Hoon;Seo, Yong-Chang;Choi, Woon-Yong;Jeong, Heon-Sang;Jung, Jae-Hyun;Yu, Kwang-Wan;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2010
  • Low quality fresh ginseng was fermented by Pheliuus linteus mycelium at $22^{\circ}C$ for 30 days, then extracted by water solvent at $100^{\circ}C$ for 180 min. On human normal cell lines (HEK293), cytotoxicity was about 10% lower in adding extracts of the fermentation ginseng than that from low quality ginseng. The fermented extracts also inhibited the growth of several human cancer cells. Among them, respectively, digestive organs related cancer cells, such as human stomach adenocarcnioma and human epithelial adenocarcinoma were most effectively inhibited up to 85% and 90%, respectively. Then, selectivities were in the ranges of 3 to 5, compared to 2 to 3 from low quality fresh ginseng. Generally, fermented ginseng extract showed higher anticancer activities as well as higher DPPH radical sacavening activity, possibly due to high contents of total phenolic components as 6.96 mg/g. It was very interesting that the fermented ginseng contained very higher contents of ginsenoside-Rc+$Rb_2$, compared to others in low quality fresh ginseng because of partition digestion of mycelium growth. The results can tell that low quality fresh ginseng can be utilized by the fermentation with Pheliuus linteus mycelium.

Enhancement of Ginsenosides Conversion Yield by Steaming and Fermentation Process in Low Quality Fresh Ginseng (증숙 발효 공정에 의한 파삼의 진세노사이드 전환 수율 증진)

  • Choi, Woon Yong;Lim, Hye Won;Choi, Geun Pyo;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • This study was performed to enhance contents of low molecular ginsenoside using steaming and fermentation process in low quality fresh ginseng. For increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng, a steaming process was applied at $90^{\circ}C$ for 12 hr which was followed by fermentation process at Lactobacillus rhamnosus HK-9 incubated at $36^{\circ}C$ for 72 h. The contents of ginsenoside Rg1, Rb1, Rc, Re and Rd were decreased with the steaming associated with fermentation process but ginsenoside Rg2, Rg3, Rh2 and CK increased after process. It was found that under the steaming associated with fermentation process, low molecule ginsenosides such as Rg2, Rg3, Rh2 and CK were increased as 3.231 mg/g, 2.585 mg/g and 1.955 m/g and 2.478 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the low quality fresh ginseng treated by the complex process was 0.11 ppm but it was 0.22 ppm when it was treated with the steaming process. This result could be caused by that the most efficiently breakdown of 1,2-glucoside and 1,4-glucoside linkage to backbone of ginsenosides by steaming associated with fermentation process. This results indicate that steaming process and fermenration process can increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng.

Quality Evaluation of Fresh ginseng by Soft X-ray and iodine Test. (연X선 및 요드반응에 의한 수삼의 품질평가)

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyung
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.167-171
    • /
    • 1984
  • Soft X-ray is useful to identify the quality of fresh ginseng causing the inside cavity or white pan of red ginseng. The portion of low mass density identified by the difference in absorption of soft X-ray showed lower dry matter density and less or no response to iodine test indicating less accumulation or excess consumption of starch. The inside white part of red ginseng absorbed less X-ray than the normal part did. Probability for identification of the inside cavity or white at fresh ginseng was rather high (80-90%) in screen observation than f'3m reading and seemed to be increased further by using the developed screen and with training. The inside white of red ginseng appeared to be due to starch deficiency. Dry matter density appeared to be better than fresh weight density for the quality criterion.

  • PDF

Effects of Storage Temperature on Quality of Fresh Ginseng during Distribution (수삼의 저장온도가 유통 중 품질에 미치는 영향)

  • Lee, Ji Hyun;Chio, Ji Weon;Hong, Yoon Pyo;Kim, Geum Soog
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.431-438
    • /
    • 2015
  • Background : This study was conducted to determine out the effect of storage temperature on the quality of fresh ginseng (Panax ginseng C. A. Meyer) during distribution. Methods and Results : Fresh ginseng was washed, packed in $30{\mu}m$ low density polyethylene (LDPE) film, then stored at 0, -2 and $-4^{\circ}C$. After 4 weeks of storage, ginseng was then stored at $5^{\circ}C$, as a simulation of the distribution process. Ginseng stored at $-4^{\circ}C$ showed higher respiration rate, ethylene production and electrolyte conductivity during the distribution phase than those stored at 0 and $-2^{\circ}C$. Decay and browning rate rapidly increased following 3 weeks of distribution in samples stored $-4^{\circ}C$. However ginseng stored $-2^{\circ}C$, which is below freezing point, for 4 weeks did not show the physiological change or quality deterioration. Ginsenoside contents decreased during storage for all plant, but did not differ significantly between storage temperatures. Conclusions : Storage at temperatures below $-2^{\circ}C$ can negatively affect respiratory characteristics and electrolyte leakage and increase quality deterioration and decay rates during distribution.

Effect of Packaging on Keeping Quality of Fresh Ginseng (수삼의 저장성에 미치는 포장의 영향)

  • Gwon, Ho-Ryeong;Lee, Seung-Cheol;Lee, Dong-Seon
    • Food Science and Preservation
    • /
    • v.1 no.2
    • /
    • pp.93-98
    • /
    • 1994
  • Fresh ginseng was packed by using available commercial plastic films of polyvinyl chloride (PVC), cast polypropylene (CPP) and low density polyethylene (LDPE). PVC was used as a wrapping on polystyrene tray, and CPP and LDPE were applied as pouch packages. Gas composition of the package and keeping quality of ginseng in the packages were evaluated for 20 day storage at 5$^{\circ}C$. LDPE (27$\mu\textrm{m}$ thick) Package modified the Package atmosphere to 11.7% O2 and 2.1% CO2, gave low microbial growth and good sensory score after 20 day storage.

  • PDF

Quality Change and Weight Loss of Fresh Ginseng Individually Packaged in a Soft Film According to its Storage Condition (연포장재 필름으로 개별포장한 수삼의 저장조건에 따른 외관품질 변화 및 개체무게 감소)

  • 손현주;김은희;이성계;노길봉
    • Journal of Ginseng Research
    • /
    • v.25 no.3
    • /
    • pp.122-126
    • /
    • 2001
  • Fresh ginseng was washed with water and packaged individually in a soft film bag (ONY/LDPE/L-LDPE;200${\times}$300mm, 90$\mu\textrm{m}$), then stored at 25$^{\circ}C$, 10$^{\circ}C$, or 4$^{\circ}C$ to investigate quality and weight changes of the packaged fresh ginseng according to its storage time. Softening was the major phenomenon which influenced on the quality of the packaged fresh ginseng while spoilage and color-change were relatively minor phenomena. There were very good correlations not only between the quality change rate constant and the storage temperature but between the weight change rate constant and the storage temperature. This result suggests that the shelf-life and the weight loss of the packaged fresh ginseng being store at low temperature can be estimated by an accelaerated sotrage test.

  • PDF

High Pressure Extraction Process of Low Quality Fresh Ginseng for Enhancing Anticancer Activities (파삼의 항암활성 증진이 가능한 고압 추출 공정)

  • Ha, Ji-Hye;Kim, Young;Jeong, Seung-Seop;Jeong, Myoung-Hoon;Jeong, Heon-Sang;Jeong, Jae-Hyun;Yu, Kwang-Wan;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.397-406
    • /
    • 2009
  • The low quality fresh ginseng was extracted by water at $80^{\circ}C$ and 240 bar for 20 min (HPE, High pressure extraction process). The cytotoxicity on human normal kidney cell (HEK293) and human normal lung cell (HEL299) of the extracts from HPE showed 28.43% and 21.78% lower than that from conventional water extraction at $100^{\circ}C$ in adding the maximum concentration of $1.0\;mg/m{\ell}$. The human breast carcinoma cell and lung adenocarcinoma cell growth were inhibited up to about 86%, in adding $1.0\;mg/m{\ell}$ of extracts from HPE. This values were 9-12% higher than those from conventional water extraction. On in vivo experiment using ICR mice, the variation of body weight of mice group treated fresh ginseng extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The extracts from HPE was showed longer survival times as 35.65% than that of the control group, and showed the highest tumor inhibition activities compared with other group, which were 70.64% on Sarcoma-180 solid tumor cells. On the high performance liquid chromatogram (HPLC), amount of ginsenoside-$Rg_2$, $Rg_3$, $Rh_1$ and $Rh_2$ on fresh ginseng were increased up to 43-183% by HPE, compared with conventional water extracts. These data indicate that HPE definitely plays an important role in effectively extracting ginsenoside, which could result in improving anticancer activities. It can be concluded that low quality fresh ginseng associated with this process has more biologically compound and better anticancer activities than that from normal extraction process.

Enhancement of Low Molecular Ginsenoside Contents in Low Quality Fresh Ginseng by Fermentation Process (등외품 인삼(파삼)의 유산균 발효에 의한 저분자 진세노사이드 함량 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Song, Chi-Ho;Seo, Yong-Chang;Kim, Ji-Seon;Kim, Bo-Hyeon;Shin, Dae-Hyun;Yoon, Chang-Soon;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.117-123
    • /
    • 2012
  • This study compared the contents of low molecular ginsenoside according to fermentation process in low grade fresh ginseng. Low grade fresh ginseng was directly inoculated with a 24 h seed culture of $Bifidobacterium$ Longum B6., $Lactobacillus$ $casei$., and incubated at $36^{\circ}C$ for 72 h. $Bifidobacterium$ Longum B6 was specifically was found to show the best growth on $3,255{\times}10^6\;CFU/m{\ell}$ after 48 h of fermentation. The content of ginsenoside Rb1, Re and Rd were decreased with the fermentation but ginsenoside Rh2 and Rg2 increased after fermentation process. In the case of low molecular ginsenoside conversion yields were 56.07% of Rh2, 12.03% of Rg3 and 77.11% of Rg2, respectively. In addition, compound-K was irregular conversion yield as long as 72 h of fermentation. This results indicate that fermentation process could increase the low molecular ginsenoside in low grade fresh ginseng.

Marketing of cleaned fresh ginseng and pre-packaging fumigation of 2-phenylethyl alcohol on ginseng storability (세척인삼 유통 현황과 포장전 2-phenylethyl Alcohol 훈증이 저장성에 미치는 영향)

  • Kim, Sun-Ik;Sung, Bong-Jae;Kim, Hyeon-Ho;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • The potential factors for quality loss of cleaned fresh ginseng and technology to be associated with the improvement of marketability through pre-packaging fumigation were examined. Major microorganisms isolated from fresh ginseng included Botrytis cinerea, and Erwinia sp. Others such as Cylindrocarpon sp., Fusarium spp., Pennicilium spp., Bacillus spp. were also found at relatively low frequency. The bacterial density of vacuum packaged fresh ginseng rapidly increased during simulated marketing. Little correlation between bacterial growth and package swelling was found. In order to improve packaging method of fresh ginseng, pre-packaging treatment of 2-phenylethyl alcohol (PE, 100 uL/L, 4 hr) was examined. The fumigation treatment effectively inhibited the growth of bacteria density and also effective on keeping firmness of ginseng root, especially in cortical portion. The internal gas compositions of plastic container packaged for ginseng were approximately ranged between 6 to 8% $O_2$and 3 to 4% $CO_2$. The $O_2$ level of fumigation treatment was lower than control whereas $CO_2$ level was higher. The upsurge of ethylene evolution I day after simulated marketing was found only in fumigation treatment but it returned to ordinary level at day 2. The sucrose content of 2-PE treatment was significantly reduced at 5 days after simulated marketing but reducing sugars like glucose and fructose remained at higher level. The difference in sugar levels was reduced after 10 days of simulated marketing. The decay of fresh ginseng began at the lateral or fine root, which is weak to physical damage, in general. The epidermis was more damaged. Plastic container packaging with PE fumigation could be an alternative to vacuum packaging, which allows an aerobic environment and prevents anaerobic respiration. Further study of pre-package fumigation is required to improve technology of fresh ginseng marketing.

Effect of Low Storage Temperature on Quality of Fresh Ginseng (저온저장 온도가 수삼의 품질에 미치는 영향)

  • Kim, Hee-Su;Kim, Gun-Hee;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • To investigate optimum temperature for storage of fresh ginseng (Panax ginseng C. A. Meyer), the quality of the ginseng was compared during its storage at $-3^{\circ}C$, $-1.5^{\circ}C$ and $0^{\circ}C$. The deterioration rate of fresh ginseng stored at $-3^{\circ}C$ was the lowest for 8 weeks after storage. The rate was rapidly increased after that time and the rate at $-3^{\circ}C$ was higher than that of fresh ginseng stored at $-1.5^{\circ}C$ or $0^{\circ}C$ after the 12th week of storage. The deterioration severity of the fresh ginseng stored at $0^{\circ}C$ was much higher than that of the ginseng stored at $-1.5^{\circ}C$ and $-3^{\circ}C$. The weight loss of fresh ginseng ranged from 0.7---- to 1.6---- after 16th week; it was the lowest in the ginseng stored at $-1.5^{\circ}C$ and similar in fresh ginseng stored at $0^{\circ}C$ and $-3^{\circ}C$. The number of viable cells and molds in the fresh ginseng stored at $-3^{\circ}C$ was smaller than the fresh ginseng that was stored at other temperatures for 12 weeks, but did not differ with different storage temperatures after the 14th week of storage. The surface color of the fresh ginseng at $0^{\circ}C$ or $-1.5^{\circ}C$ was changed little while the discoloration of fresh ginseng at $-3^{\circ}C$ was relatively great. The electrolytic leakage from the rhizome of the fresh ginseng stored at $-3^{\circ}C$ was higher than that of the rhizome stored at $-1.5^{\circ}C$ and $0^{\circ}C$. The overall sensory quality of the fresh ginseng dropped below 3.0 in the S-point scale after the 10th week of storage at $-3^{\circ}C$ and after the 14th week of storage at $-1.5^{\circ}C$ and $0^{\circ}C$ (p<0.05).