• 제목/요약/키워드: Low Pressure Stage

검색결과 312건 처리시간 0.029초

Batch type 가스침탄 열처리로 국산화개발 (Development of High Performance Low Pressure Carburizing System)

  • 김원배;동상근;장병록;한형기;김한석;조한창
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.262-269
    • /
    • 2006
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching(LPC-GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

대유량 솔레노이드 밸브 개발에 관한 연구 (A Study on Development of High Flow Solenoid Valves)

  • 정찬세;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Port size 80mm or above large-flow type solenoid valves are extensively used in dust collector and power plants. These multi-stage solenoid valve have few problem. first, multi-solenoid valves are almost depend on imports and there are weak in the brine environment and the low energy efficiency. Because these problem, increased the necessity of research on the development of large flow and high pressure type solenoid valves. In this study, describe the design method of multi-stage solenoid test bench and confirm the influence valve performance on several parameter such as diaphragm orifice diameter. At first, each part has modeled by AMESim simulation tool and combining them. This AMESim virtual multi-stage solenoid valve found influence valve performance on the valve parameter. Finally developed the multi-stage solenoid valve and verified that performance on experimental result.

저압터빈 최종단 블레이드 손상해석 (Damage Analysis for Last-Stage Blade of Low-Pressure Turbine)

  • 송기욱;최우성;김완재;정남근
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1153-1157
    • /
    • 2013
  • 증기터빈의 터빈 블레이드는 발전소 핵심설비 중 하나로, 로터의 디스크에 결합되어 회전함으로 써 증기 에너지를 기계적 에너지로 변환시켜주는 역할을 하고 있다. 최근 터빈의 잦은 기동정지로 인해 블레이드 회전에 따른 원심하중이 반복적 작용하고 이에 따른 저압 증기터빈 최종단 블레이드의 손상이 자주 보고되고 있다. 본 논문에서는 터빈 블레이드에 발생되는 손상을 분석하여 블레이드에 발생되는 저주기 피로수명을 평가하였다. 증기터빈 최종단 블레이드의 균열발생 수명을 결정하기 위해 유한요소법으로 계산한 탄성응력에 Neuber's rule을 적용하여 진변형율 진폭을 계산하였으며, 예측된 수명과 블레이드 실제 기동정지횟수가 잘 일치됨을 보였다.

균열을 내재한 저압터빈 최종단 블레이드의 진동 특성 및 파괴 임계균열길이 해석 (Vibration Characteristics and Analysis of the Critical Crack Length for a Fracture in the Last Stage Blade of a Low Pressure Steam Turbine)

  • 윤희철;우창기;이장규
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.386-392
    • /
    • 2016
  • The sizes of last stage blades (LSB) in a low-pressure steam turbine have been getting larger for the development of high-capacity power plants. They are also larger than other blades in the same system. As a result, crack propagation in an LSB is caused by the large centrifugal force, low natural frequency, and repeated turbine startups. In this study, the critical crack length for a fracture and vibration characteristics, in accordance with crack propagation, were analyzed using a finite element method to calculate the stress intensity factor (SIF) and the natural frequency that was affected by the stress-stiffening effect. It was calculated that the frequency of the third and fifth modes passed the excited harmonic resonance (5X and 10X) and the observed calculated critical crack length matched that of the real fractured surface.

새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구 (Study on the performance characteristics of a new CO2 auto-cascade heat pump system)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.191-196
    • /
    • 2017
  • 20세기에 대두된 HCFC나 CFC계의 냉매들의 환경에의 악영향을 극복하기 위하여 보다 환경 친화적인 이산화탄소와 같은 자연냉매에 대한 관심이 커지고 있다. 겨울철 대기의 열원을 이용하여 증발을 유도하는 이산화탄소 열펌프는 증발기의 온도가 높아 효율이 상대적으로 낮아지고, 130bar가 넘는 고압으로 인하여 열펌프 설비 부품들의 제작의 어려움이 따르게 된다. 본 연구는 보다 낮은 압력의 새로운 2단 팽창식 $CO_2$ 오토 캐스케이드 열펌프를 고안하여 이러한 단점들을 해소하고 보다 효율을 증가시키고자 하였다. 새로운 오토 캐스케이드 열펌프에 2단 팽창방식과 효과적인 냉각방식의 시스템 구성을 하여 혼합냉매인 $CO_2$ 와 R32를 적용하였다. 공정에 고압 70bar, 중간 팽창압은 25bar, 최종 저압은 10bar를 적용하여 해석한 결과, 현재의 오토 캐스케이드 열펌프 공정의 COP는 1.629이었으나, 개선된 중간 압력 25bar의 2단 팽창 오토 캐스케이드 공정은 2.332로 현재의 공정보다 43.15% 향상되었다. 또한 저압측 증발기의 온도도 $-10^{\circ}C$ 이하가 되어 찬 외기에도 증발이 용이하게 발생되는 공정이 되었다. 본 공정이 향후 $CO_2$ 열펌프의 성능계수를 보다 향상시키고 고압에 따른 부품 문제들의 해소에 기여할 수 있는 공정으로 분석되었다.

Unsteady Wet Steam Flow Measurements in a Low-Pressure Test Steam Turbine

  • Duan, Chongfei;Ishibashi, Koji;Senoo, Shigeki;Bosdas, Ilias;Mansour, Michel;Kalfas, Anestis I.;Abhari, Reza S.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.85-94
    • /
    • 2016
  • An experimental study is conducted for unsteady wet steam flow in a four-stage low-pressure test steam turbine. The measurements are carried out at outlets of the last two stages by using a newly developed fast response aerodynamic probe. This FRAP-HTH probe (Fast Response Aerodynamic Probe - High Temperature Heated) has a miniature high-power cartridge heater with an active control system to heat the probe tip, allowing it to be applied to wet steam measurements. The phase-locked average results obtained with a sampling frequency of 200 kHz clarify the flow characteristics, such as the blade wakes and secondary vortexes, downstream from the individual rotational blades in the wet steam environment.

유체-고체 상호작용 (FSI)기법을 이용한 이엽기계식 인공심장판막을 지나는 혈액유동과 판첨거동에 관한 수치해석적 연구 (Numerical Study on the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve and Leaflet Behavior Using Fluid-Structure Interaction (FSI) Technique)

  • 최청렬;김창녕
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.14-22
    • /
    • 2004
  • Bileaflet mechanical valves have the complications such as hemolysis and thromboembolism, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. The first aim of the current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of the previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. A finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. As a result, it is observed that the leaflet is closing very slowly at the first stage of processing but it goes too fast at the last stage. And the results noted that the low pressure is formed behind leaflet to make the cavitation because of closing velocity three times faster than opening velocity. Also it is observed some fluttering phenomenon when the leaflet is completely opened. And the rebounce phenomenon due to the sudden pressure change of before and after the leaflet just before closing completely. The some of time-delay is presented between the inversion point of ventricle and aorta pressure and closing point of leaflet. The shear stress is bigger and the time of exposure is longer when the flow rate is maximum. So it is concluded that the distribution of shear stress at complete opening stage has big effect on the blood damage, and that the low-pressure region appeared behind leaflet at complete closing stage has also effect on the blood damage.

Contractible Beat Pipe for Conduction Cooled Superconducting Magnets

  • Kim, Seokho;Sangkwon Jeong;Jin, Hong-Beom;Kideok Sim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.76-80
    • /
    • 2003
  • A contractible heat pipe is designed and tested to improve cooling performance of conduction cooled superconducting magnet. When the heat pipe temperature drops below the triple point temperature, heat pipe working fluid freezes to create low pressure. From this moment the heat pipe does net work any more (OFF state) and it just works as a heat leak path when the temperature of the first stage is higher than that of the second stage. Considering small cooling capacity of the second stage around 4.2 K, the conduction loss is not negligible. Therefore, the contractible heat pipe, made of a metal bellows and copper tubes, was considered to eliminate the conduction loss. Nitrogen and argon are as working fluid of heat pipe. The copper block is cooled down with these heat pipe and the cooling performance for each heat pipe is compared. At off state, the bellows is contracted due to the low pressure of heat pipe and the evaporator section of the heat pipe is detached about 3 mm from the second stage cold head of the cryocooler. In this way, we tan eliminate the conduction loss through the heat pipe wall.

압력용기용 강의 저온 피로크랙 하한계 특성에 관한 연구(II) (A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;정찬기;하경준
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.78-83
    • /
    • 2000
  • In this study, CT specimens were prepared from AST SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at 25$^{\circ}C $, -60$^{\circ}C $, -80$^{\circ}C $ and -100$^{\circ}C $ and in the range of stress ratio of 0.05, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\delta} K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\delta $K in the stable of fatigue crack growth (Region II) were increased in proportion to descending temperature. It was assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN -$\delta $K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN is rapid in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

압력용기용 강의 저온 피로크랙전파 하한계 특성에 관한 연구 (A Study on the Fatigue Crack Propagation Threshold Characteristic in Steel of Pressure Vessel at Low Temperature)

  • 박경동;박상오
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.326-331
    • /
    • 2001
  • In this study. CT specimens were prepared from ASME SA5l6 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ in the range of stress ratio of 0.1 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔKsub/th/ in the early stage of fatigue crack growth ( Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da.dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF