• Title/Summary/Keyword: Low Power Wide Area Transmission Technology

Search Result 17, Processing Time 0.022 seconds

Development of a System for Field-data Collection Transmission and Monitoring based on Low Power Wide Area Network (저전력 광역통신망 기반 현장데이터 수집 전송 및 모니터링 시스템 개발)

  • Yeong-Tae, Ju;Jong-Sil, Kim;Eung-Kon, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1105-1112
    • /
    • 2022
  • Field data monitoring systems such as renewable energy generation and smart farm integrated control are developing from PC and server to mobile first, and various wireless communication and application services have emerged with the development of IoT technology. Low-power wide-area networks are services optimized for low-power, low-capacity, and low-speed data transmission, and data collected in the field is transmitted to designated storage servers or cloud-based data platforms, enabling data monitoring. In this paper, we implement an IoT repeater that collects field data with a single device and transmits it to a wireless carrier cloud data flat using a low-power wide-area network, and a monitoring app using it. Using this, the system configuration is simpler, the cost of deployment and operation is lower, and effective data accumulation is possible.

Exploiting Spatial Reuse Opportunity with Power Control in loco parentis Tree Topology of Low-power and Wide-area Networks (대부모 트리 구조의 저 전력 광역 네트워크를 위한 전력 제어 기반의 공간 재사용 기회 향상 기법)

  • Byeon, Seunggyu;Kim, Jong Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • LoRa is a physical layer technology designed to secure highly reliable long-range communication with introducing loco parentis tree network and chirp spreading spectrum. Since since a leaf can send message to more than one parents simultaneously with a single transmission in a region, packet delivery ratio increases logarithmically as the number of gateways increases. The delivery ratio, however, dramatically collapses even under loco parentis tree topology due to the limitations of ALOHA-like primitive MAC, . The proposed method is intended to exploit SDMA approach to reuse frequency in an area. With the view, TxPower of each sender for each message in a concurrent transmission is elaborately controlled to survive the collision at different gateway. Thus, the gain from the capture effect improves the capacity of resource-hungry Low Power and Wide Area Networks.

Gateway Channel Hopping to Improve Transmission Efficiency in Long-range IoT Networks

  • Kim, Dae-Young;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1599-1610
    • /
    • 2019
  • Intelligent services have expanded as Internet of Things (IoT) technology has evolved and new requirements emerge to accommodate various services. One new requirement is transmitting data over long distances with low-power. Researchers have developed low power wide area (LPWA) network technology to satisfy the requirement; this can improve IoT network infrastructure and increase the range of services. However, network coverage expansion causes several problems. The traffic load is concentrated at a specific gateway, which causes network congestion and leads to decreased transmission efficiency. Therefore, the approach proposed in this paper attempts to recognize and then avoid congestion through gateway channel hopping. The LPWA network employs multiple channels, so wireless channel hopping is available in a gateway. Devices that are not delay sensitive wait for the gateway to reappear on their wireless channel; delay sensitive devices change the wireless channel along the hopping gateway. Thus, the traffic load and congestion in each wireless channel can be reduced improving transmission efficiency. The proposed approach's performance is evaluated by computer simulation and verified in terms of transmission efficiency.

Design and Application of LoRa-based Network Protocol in IoT Networks (사물 네트워크에서 LoRa 기반 네트워크 프로토콜 설계 및 적용)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1089-1096
    • /
    • 2019
  • Recently, small-scale IoT services using a small amount of information through low-performance computing have been spread. It requires low cost, low-power, and long-distance communication technologies with wide communication radius, relatively low power consumption. This paper proposes a MAC layer and routing protocol that supports multi-hop transmission in small-scale IoT environment distributed over a large area based on LoRa communication and delivering a small amount of sensing data. The terminal node is mobile and the communication type provides bidirectional transmission between the terminal node and the network application server. By applying the proposed protocol, a production line monitoring system for smart factory was implemented. It was confirmed that the basic monitoring functions are normally performed.

A Method for Transmission of Image data using Bluetooth Network (블루투스 네트워크를 이용한 영상 전송)

  • Lee, Tae-Hyoung;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.432-434
    • /
    • 2004
  • Bluetooth is a promising wireless personal area network technology and is on the verge of being ubiquitously deployed over wide range of devices. This paper aims to implement a wireless network for image transmission using Bluetooth technology. The characteristics of Bluetooth are small size, low band width and low power consumption, However, there are some difficulties in implementing a wireless radio network using Bluetooth since a lot of repeaters may needed when Bluetooth depends a role of host on personal computer for data transmission. In this paper, a method to implement a wireless radio network is proposed and applied for image transmission using a small size microprocessor for each Bluetooth.

  • PDF

A Study on IoT Security Technology using LoRa (LoRa 기반 IoT 보안대책에 대한 연구)

  • Chung, Youngseek;Cha, Jaesang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • According to the rapid growth of Internet of Things (IoT) technology, we are able to connect between human and objects and between objects through network, allowing transmission and reception of information beyond the limits of space. These days, Low Power Wide Area (LPWA) technologies becomes popular more and more, to implement IoT infrastructure effectively. In this paper, this study aims to analyze LoRa, one of LPWA technologies, and suggest IoT security technology using LoRa to minimize threats to security.

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

Implementation of Smart Shoes for Dementia Patients using Embedded Board and Low Power Wide Area Technology (저전력장거리 기술과 임베디드 보드를 이용한 치매 돌봄 스마트 신발 구현)

  • Lee, Sung-Jin;Choi, Jun-Hyeong;Seo, Chang-Sung;Park, Byung-Kwon;Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • In this paper smart shoes for dementia care using embedded boards and Low Power Wide Area technology and their application software are implemented. The communication board composed of Cortex-M3 board and LoRa module is embedded into groove made in outsole of smart shoes. Including the mold, the shoe outsole was manufactured by hand. By using application software and embedded board, caregiver can track the position of dementia patient using GPS and LoRa network. The location tracking and data transmission operations of smart shoes have been successfully verified in the outdoor environment. The smart shoes of this paper are applicable to a safety device to prevent the disappearance of demented patients through results of experiments and if bigdata is collected and analyzed by deep-learning, it may be helpful to analyze the predictive path of dementia patients or the pattern of dementia.

Exploiting Spatial Reuse Opportunity with Power Control in loco parentis Tree Topology of Low-power and Wide-area Networks (대부모 트리 구조의 저 전력 광역 네트워크를 위한 전력 제어 기반의 공간 재사용 기회 향상 기법)

  • Byeon, Seunggyu;Kim, JongDeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.194-198
    • /
    • 2021
  • LoRa is a physical layer technology that is designed to provide a reliable long-range communication with introducing CSS and with introducing a loco parentis tree network. Since a leaf can utilize multiple parents at the same time with a single transmission, PDR increases logarithmically as the number of gateways increases. Because of the ALOHA-like MAC of LoRa, however, the PDR degrades even under the loco parentis tree topology similarly to the single-gateway environment. Our proposed method is aimed to achieve SDMA approach to reuse the same frequency in different areas. For that purpose, it elaborately controls each TxPower of the senders for each message in concurrent transmission to survive the collision at each different gateway. The gain from this so-called capture effect increases the capacity of resource-hungry LPWAN. Compared to a typical collision-free controlled-access scheme, our method outperforms by 10-35% from the perspective of the total count of the consumed time slots. Also, due to the power control mechanism in our method, the energy consumption reduced by 20-40%.

  • PDF

Development of Wireless Data Transmission System for LPWA-based Industrial Sites (LPWA 기반 산업현장의 무선 데이터 전송 시스템 개발)

  • Kwon, Hyuk;Cho, Kyoung-Woo;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Recently, there have been many studies on the IoT environment in which the sensors attached to the equipment automatically transmit and process the site information in real time through the network to control the equipment. The core of such a system is a network for data transmission and reception, and a wired network with wide transmission distance is a priority. However, in the case of a wired network, there is a problem that the time and cost consumed to configure the communication is higher than that of the wireless. In this paper, we propose LPWA - based wireless data transmission system using LPWA and BLE communication to solve this problem. The proposed system collects data from equipment through BLE and transmits data to the server using LPWA. Experimental results show that the spreading factor of maximum length of LPWA is 8, and the minimum length is 9.