• 제목/요약/키워드: Low Power Test

검색결과 1,418건 처리시간 0.042초

스마트 제조를 위한 Cortex-M 기반 임베디드 시스템 개발 (Development of Embedded System Based Cortex-M for Smart Manufacturing)

  • 조춘남
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.326-330
    • /
    • 2020
  • Small-scale production control systems for smart manufacturing are becoming increasingly necessary as the manufacturing industry seeks to maximize manufacturing efficiency as the demand for customized product production increases. Correspondingly, the development of an embedded system to realize this capability is becoming important. In this study, we developed an embedded system based on an open source system that is cheaper than a widely applied programmable logic controller (PLC)-based production control system that is easier to install, configure, and process than a conventional relay control panel. This embedded system is system is based on a low-power, high-performance Cortex M4 processor and can be applied to smart manufacturing. It is designed to improve the development environment and compatibility of existing PLCs, control small-scale production systems, and enable data collection through heterogeneous communication. The real-time response characteristics were confirmed through an operation test for input/output control and data collection, and it was confirmed that they can be used in industrial sites.

Salt-fog 분무에 따른 실리콘 고무 애자의 표면열화 (Surface Degradation of Silicone Rubber Insulator by Salt-fog Test)

  • 장동욱;박영국;강성화;이용희;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.509-512
    • /
    • 1999
  • The main problem in porcelain as a high voltage insulator is that the water film is felled on the insulator surface due to rain, flog, and dew. In the presence of contamination. leakage current increases which may lead to flashover that could be followed by an outage of the power system. These days, high voltage polymer outdoer insulators have been studied and widely used, because they have excellent electrical and mechanical properties, superior performance of flashover for contamination. light weight, easy installation or handling. no maintenance during service, competitive price, and so on. First of a1l the excellent performance of the silicone rubber in polluted and wet conditions is attributed to the ability of the material to maintain the hydrophobicity of the surface in the presence of severe contaminants and wet conditions. This is due to a low surface energy of the silicone rubber. But the leakage current and some surface discharge occurs on the surface of insulator when the insulator is used for a long time. So the leakage current and the surface discharge current are important lo estimate the condition of the silicone rubber surface. In this paper, the average leakage current the surface discharge current the surface rubber surface with the salt fog condition for the first stage.

  • PDF

Effect of Loading Rate on the Fracture Behavior of Nuclear Piping Materials Under Cyclic Loading Conditions

  • Kim, Jin Weon;Choi, Myung Rak;Kim, Yun Jae
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1376-1386
    • /
    • 2016
  • This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., $316^{\circ}C$). SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and $316^{\circ}C$. For SA508 Gr.1a lowalloy steel, the loading rate effect on the fracture behavior was appreciable at $316^{\circ}C$ under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R) was -1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = -1 at a quasistatic loading rate.

경사진 직사각형 공간내에서 내부적으로 가열되는 유체의 자연대류유동 및 열전달 (Natural Convection Flow and Heat Transfer in a Fluid Heated Internally within an Inclined Rectangular Enclosure)

  • 이재헌;김재근;박만흥
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.555-568
    • /
    • 1992
  • 본 연구에서는 상기 연구의 연장으로서 내부 Rayleigh수가 1*$10^{4}$~1.5 *$10^{5}$ 범위 일때 Prandtl수가 6.05인 내부발열유체에 의해 자연대류가 일어나는 밀폐공간에서 종회비가 1/2, 1/3, 및 1/4로 변화할 때 유동, 온도분포 및 열전달특성 을 수치적인 방법 및 실험적인 방법으로 연구하였다.

TMS320F28377D 기반 아날로그-디지털 신호 처리 시스템 (Analog-Digital Signal Processing System Based on TMS320F28377D)

  • 김형우;남기곤;최준영
    • 대한임베디드공학회논문지
    • /
    • 제14권1호
    • /
    • pp.33-41
    • /
    • 2019
  • We propose an embedded solution to design a high-speed and high-accuracy 16bit analog-digital signal processing interface for the control systems using various external analog signals. Choosing TMS320F28377D micro controller unit (MCU) featuring high-performance processing in the 32-bit floating point operation, low power consumption, and various I/O device supports, we design and build the proposed system that supports both 16-bit analog-digital converter (ADC) interface and high precision digital-analog converter (DAC) interface. The ADC receives voltage-level differential signals from fully differential amplifiers, and the DAC communicates with MCU through 50 MHz bandwidth high-fast serial peripheral interface (SPI). We port the boot loader and device drivers to the implemented board, and construct the firmware development environment for the application programming. The performance of the entire implemented system is demonstrated by analog-digital signal processing tests, and is verified by comparing the test results with those of existing similar systems.

양성자 교환막 연료전지용 탄소 복합재료 분리판 개발 (Development of Carbon Composite Bipolar Plates for PEMFC)

  • 임준우
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.222-228
    • /
    • 2019
  • 양성자 교환막 연료전지 (PEMFC) 시스템은 환경 친화적인 전력 공급원으로 많은 잠재적 용도를 가지고 있다. 탄소섬유 복합재료 분리판은 산성환경에서 내부식성이 우수하며 높은 비강도와 비강성을 갖지만, 상대적으로 낮은 전기전도도로 인하여 PEMFC의 효율을 떨어뜨린다. 본 연구에서는 분리판의 전기 저항을 감소시키기 위하여 전기 전도성 입자(흑연 분말과 카본 블랙)를 탄소-에폭시 복합재료 프리프레그에 도포하였다. 전기 저항과 기계적 특성을 기존의 시험 방법을 사용하여 측정하였으며, 개발된 탄소 복합재료 분리판의 단위 셀 성능평가를 실시하여 기존의 분리판과 비교하였다.

Preparation of Biomass Based Carbon for Electrochemical Energy Storage Application

  • Harshini Priyaa, V.S.;Saravanathamizhan, R.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.159-169
    • /
    • 2019
  • The activated carbon materials were prepared from waste biomass by ultrasonic assisted chemical activation method (UCA), ultrasonic assisted physical activation method (UPA) and Manganese nitrogen doped carbon (Mn/N-C). The XRD result shows the turbostatic (fully disordered) structure. The cyclic voltammetry test was done at 50 mV/s using 1M sodium sulfate and the values of specific capacitance were found to be 93, 100 and 115 F/g for UCA, UPA and Mn/N-C respectively. The power density values for the samples UCA, UPA and Mn/N-C were found to be 46.04, 87.97 and 131.42 W/kg respectively. The electrochemical impedance spectroscopy was done at low frequency between 1 to 10 kHz. The Nyquist plot gives the resistant characteristics of the materials due to diffusional resistance at the electrode-electrolyte interface. The Energy Dispersive X-Ray Spectroscopyanalysis (EDAX) analysis showed that the percentage doping of nitrogen and manganese were 3.53 wt% and 9.44 wt% respectively. It is observed from the experiment Mn/N-C doped carbon show good physical and electrochemical properties.

Numerical Study to Evaluate Course-Keeping Ability in Regular Waves Using Weather Vaning Simulation

  • Kim, In-Tae;Kim, Sang-Hyun
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.13-23
    • /
    • 2021
  • Since the introduction of the mandatory energy efficiency design index (EEDI), several studies have been conducted on the maneuverability of waves owing to the decrease in engine power. However, most studies have used the mean wave force during a single cycle to evaluate maneuverability and investigated the turning performance. In this study, we calculated the external force in accordance with the angle of incidence of the wave width and wavelengths encountered by KVLCC2 (KRISO very large crude-oil carrier) operating at low speeds in regular waves using computational fluid dynamics (CFD). We compare the model test results with those published in other papers. Based on the external force calculated using CFD, an external force that varies according to the phase of the wave that meets the hull was derived, and based on the derived external force and MMG control simulation, a maneuvering simulation model was constructed. Using this method, a weather vaning simulation was performed in regular waves to evaluate the course-keeping ability of KVLCC2 in waves. The results confirmed that there was a difference in the operating trajectory according to the wavelength and phase of the waves encountered.

DIFFUSIVE SHOCK ACCELERATION BY MULTIPLE WEAK SHOCKS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제54권3호
    • /
    • pp.103-112
    • /
    • 2021
  • The intracluster medium (ICM) is expected to experience on average about three passages of weak shocks with low sonic Mach numbers, M ≲ 3, during the formation of galaxy clusters. Both protons and electrons could be accelerated to become high energy cosmic rays (CRs) at such ICM shocks via diffusive shock acceleration (DSA). We examine the effects of DSA by multiple shocks on the spectrum of accelerated CRs by including in situ injection/acceleration at each shock, followed by repeated re-acceleration at successive shocks in the test-particle regime. For simplicity, the accelerated particles are assumed to undergo adiabatic decompression without energy loss and escape from the system, before they encounter subsequent shocks. We show that in general the CR spectrum is flattened by multiple shock passages, compared to a single episode of DSA, and that the acceleration efficiency increases with successive shock passages. However, the decompression due to the expansion of shocks into the cluster outskirts may reduce the amplification and flattening of the CR spectrum by multiple shock passages. The final CR spectrum behind the last shock is determined by the accumulated effects of repeated re-acceleration by all previous shocks, but it is relatively insensitive to the ordering of the shock Mach numbers. Thus multiple passages of shocks may cause the slope of the CR spectrum to deviate from the canonical DSA power-law slope of the current shock.

발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성 (Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants)

  • 방국수;박찬;이주영;이경운
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.