DOI QR코드

DOI QR Code

Preparation of Biomass Based Carbon for Electrochemical Energy Storage Application

  • Harshini Priyaa, V.S. (Department of Chemical Engineering, A.C.Tech., Anna University) ;
  • Saravanathamizhan, R. (Department of Chemical Engineering, A.C.Tech., Anna University) ;
  • Balasubramanian, N. (Department of Chemical Engineering, A.C.Tech., Anna University)
  • Received : 2018.06.13
  • Accepted : 2018.11.10
  • Published : 2019.06.30

Abstract

The activated carbon materials were prepared from waste biomass by ultrasonic assisted chemical activation method (UCA), ultrasonic assisted physical activation method (UPA) and Manganese nitrogen doped carbon (Mn/N-C). The XRD result shows the turbostatic (fully disordered) structure. The cyclic voltammetry test was done at 50 mV/s using 1M sodium sulfate and the values of specific capacitance were found to be 93, 100 and 115 F/g for UCA, UPA and Mn/N-C respectively. The power density values for the samples UCA, UPA and Mn/N-C were found to be 46.04, 87.97 and 131.42 W/kg respectively. The electrochemical impedance spectroscopy was done at low frequency between 1 to 10 kHz. The Nyquist plot gives the resistant characteristics of the materials due to diffusional resistance at the electrode-electrolyte interface. The Energy Dispersive X-Ray Spectroscopyanalysis (EDAX) analysis showed that the percentage doping of nitrogen and manganese were 3.53 wt% and 9.44 wt% respectively. It is observed from the experiment Mn/N-C doped carbon show good physical and electrochemical properties.

Keywords

E1JTC5_2019_v10n2_159_f0001.png 이미지

Fig. 1. Preparation of ultrasonic assisted (a) Chemically activated carbon(UCA), (b) physically activated carbon (UPA)from corn cob.

E1JTC5_2019_v10n2_159_f0002.png 이미지

Fig. 2. XRD graph for chemically activated carbon(CA) and ultrasonic assisted chemically activated carbon(UCA).

E1JTC5_2019_v10n2_159_f0003.png 이미지

Fig. 3. FTIR graph for a) raw corn cob (CC), b) chemically activated carbon(CA) and c) ultrasonic assisted chemically activated carbon(UCA).

E1JTC5_2019_v10n2_159_f0004.png 이미지

Fig. 4. SEM images of (a) ultrasonic assisted chemically activated corn cob; (b)ultrasonic assisted physically activated corn cob; (c) Manganese and nitrogen doped corn cob.

E1JTC5_2019_v10n2_159_f0005.png 이미지

Fig. 5. EDS for (a) ultrasonic assisted chemically activated corn cob; (b) ultrasonic assisted physically activated corn cob (c) Manganese and nitrogen doped corn cob.

E1JTC5_2019_v10n2_159_f0006.png 이미지

Fig. 6. Cyclic voltammetric curves for UCA, UPA and Mn/N-Cat scan rate 50mV/s in 1M sodium sulfate.

E1JTC5_2019_v10n2_159_f0007.png 이미지

Fig. 7. Galvanostatic charge and discharge curves for (a) UCA, (b) UPA, (c) Mn/N-Cat various current densities in 1M sodium sulfate.

E1JTC5_2019_v10n2_159_f0008.png 이미지

Fig. 8. a) The EIS Nyquist plot of the two electrode materials (inset equivalent circuit model of the electrodes), b) Bode plot of phase versus frequencyc) Bode plot of total impedance versus frequency.

Table 1. Functional groups present in the structure of corn cob

E1JTC5_2019_v10n2_159_t0001.png 이미지

Table 2. Comparison of specific capacitance of UCA, UPA, Mn/N-C using cyclic voltammetry at 50mV/s in 1M sodium sulfate

E1JTC5_2019_v10n2_159_t0002.png 이미지

Table 3. Comparison of specific capacitance of UCA at various current densities in 1M sodium sulfate

E1JTC5_2019_v10n2_159_t0003.png 이미지

Table 4. Comparison of specific capacitance of UPA at various current densities in 1M sodium sulfate

E1JTC5_2019_v10n2_159_t0004.png 이미지

Table 5. Comparison of specific capacitance of Mn/N-C at various current densities in 1M sodium sulfate

E1JTC5_2019_v10n2_159_t0005.png 이미지

References

  1. A. Adekunle Moshood, A. Farid Nasir, Sust. Energy. Rev, 2015, 52, 1282-1293. https://doi.org/10.1016/j.rser.2015.07.129
  2. H.Lu, and X.S. Zhao, Sust. energy & fuels, 2017, 1, 1265-1281. https://doi.org/10.1039/C7SE00099E
  3. P. Lu, D. Xue, H. Yang & Y. Liu, Int. J. Smart and Nano Materials, 2013, 4(1), 2-26. https://doi.org/10.1080/19475411.2011.652218
  4. Mohammad-Khah and R. Ansari, Int.J. ChemTech Res, 2009, 1(4), 859-864.
  5. Y. Huang, L.Peng,Yu Liu, G. Zhao, J. Y. Chen and G. Yu, Appl. Mater. Interfaces, 2016, 8, 15205-15215. https://doi.org/10.1021/acsami.6b02214
  6. G. Aravindaraj Kannan, S. Amaresh, D.W. Kim, J. Power Sources, 2017, 337, 65-72. https://doi.org/10.1016/j.jpowsour.2016.10.109
  7. C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, J. Power Sources, 2014, 258, 290-296. https://doi.org/10.1016/j.jpowsour.2014.01.056
  8. M. Dhelipan, A. Arunchander, A.K. Sahu, D. Kalpana, J.Saudi Chem. Society, 2017, 21(4), 487-494. https://doi.org/10.1016/j.jscs.2016.12.003
  9. W. Tang,Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, J. Tua, Mater. Res. Bulletin, 2017, 88, 234-241. https://doi.org/10.1016/j.materresbull.2016.12.025
  10. Y. Hu, H. Liu, Q. Ke and J. Wang, J. Mater. Chem. A, 2014, 2(30), 11753-11758. https://doi.org/10.1039/C4TA01269K
  11. J. Jiang, J. Zhu, W. Ai, Z. Fan, X. Shen, C. Zou, J. Liu, H. Zhang and T. Yu, Energy Environ. Sci., 2014, 7(8), 2670-2679. https://doi.org/10.1039/c4ee00602j
  12. N. R. Kim, Y. S. Yun, M. Y. Song, S. J. Hong, M. Kang, C. Leal, Y. Woo Park, and H.J. Jin, Appl. Mater. Interfaces, 2016, 8(5), 3175-3181. https://doi.org/10.1021/acsami.5b10657
  13. K. Sun, H. Wang, H. Peng, Y. Wu, G. Ma, Z. Lei, Int. J. Electrochem. Sci., 2015, 10 2000-2013.
  14. J. Gomez, E. E. Kalu, J. Power Sources, 2013, 230, 218-224. https://doi.org/10.1016/j.jpowsour.2012.12.069
  15. Y.Guo, Z. Shi, M. Chen, & C. Wang, J. Power Sources, 2014, 252, 235-243. https://doi.org/10.1016/j.jpowsour.2013.11.114
  16. S. Badie Girgis, M. Yassin Temerk, M. Mostafa Gadelrab and D. Ibrahim Abdullah, Carbon sci., 2007, 8(2), 95-100.
  17. W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, Y. Tian, Electrochim. Acta, 2015, 176, 533-541. https://doi.org/10.1016/j.electacta.2015.07.059
  18. E. Y. L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochim. Acta, 2016, 192, 110-119. https://doi.org/10.1016/j.electacta.2016.01.140
  19. S. Sugashini, K. M. Meera Sheriffa Begum, New carbon materials, 2015, 30, 252-261. https://doi.org/10.1016/S1872-5805(15)60190-1
  20. H. Jin, X. Wang, Y. Shen, Z. Gu, J. Analytical and Appl. Pyrolysis, 2014, 110, 18-23. https://doi.org/10.1016/j.jaap.2014.07.010
  21. S. Vafakhah, M. E. Bahrololoom, R. Bazarganlari, M. Saeedikhani, J. Env. Chem. Engg, 2014, 2, 356-361. https://doi.org/10.1016/j.jece.2014.01.005
  22. C. Zequine, C. K. Ranaweera, Z. Wang, Sweta Singh,T.Prashant, O. N. Srivastava, K. G.Bipin, K. Ramasamy, P. K. Kahol, P. R. Dvornic, R. K. Gupta, Sci. Reports, 2016, 6(31704), 1-10.
  23. T.Huang, Z. Qiu, D. Wu, & Z. Hu, Int. J. Electrochem. Sci. 2015, 10, 6312-6323.
  24. C.S. Yang, Y. S. Jang, & H. K. Jeong, Current Appl. Phys, 2014, 14(12),1616-1620. https://doi.org/10.1016/j.cap.2014.09.021
  25. K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochim. Acta, 2015, 166, 1-11. https://doi.org/10.1016/j.electacta.2015.03.048
  26. A. Saravanan, P. Senthil Kumar, R. Mugilan, Res. Chem. Intermed, 2016, 42(4), 3117-3146. https://doi.org/10.1007/s11164-015-2201-4
  27. Skrabalak, S. E, Phys. chem. chem. phys, 2009, 11(25), 4930-4942. https://doi.org/10.1039/b823408f
  28. I. A. Anukam, B.P. Goso, O.OmobolaOkoh, S.N. Mamphweli, J.of Chem. 2017, 6478389, 1-9.
  29. S. Saqib Shams, L.S. Zhang, R. Hu, R. Zhang, J. Zhu, Mater. Letters, 2015, 161, 476-479. https://doi.org/10.1016/j.matlet.2015.09.022
  30. M. Praveen Kumar, T. Kesavan, G. Kalita, P. Ragupathi, T. N. Narayan and K. D. Patnayak, RSC Adv., 2014, 4, 38689-38697. https://doi.org/10.1039/C4RA04927F
  31. I. Demiral, A. Eryazici, S. Sevgi, Biomass and Bioenergy, 2012, 36, 43-49. https://doi.org/10.1016/j.biombioe.2011.10.045
  32. R. Sacithraa, M. Mohan, S. Vijayachitra, Int. J. Comp. Appl. 2013, 975-8887.
  33. D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T. Sham, X. Sun, Y. Siyu, S Knights, Appl. Surf. Sci, 2011, 257(21), 9193-9198. https://doi.org/10.1016/j.apsusc.2011.05.131
  34. M. Harshiny, N. Samsudeen, R. J. Kameswara, M.Matheswaran, Int. J. hydrogen energy, 2017, 42, 26488-26495. https://doi.org/10.1016/j.ijhydene.2017.07.084
  35. C. Nivedhini Iswarya, M. Matheswaran, Int. J. hydrogen energy, 2017, 42, 26475-26487. https://doi.org/10.1016/j.ijhydene.2017.08.007
  36. T. Huang, Z. Qiu, D. Wu, Z. Hu, Int. J. Electrochem. Sci., 2015, 10, 6312-6323.
  37. C.NivedhiniIswarya, M. Harshiny, S.Aiswarya Devi, M. Matheswaran, Matt. Chem. Phy., 2017, 195, 247-258. https://doi.org/10.1016/j.matchemphys.2017.04.027