• Title/Summary/Keyword: Low Power Protocol

Search Result 341, Processing Time 0.025 seconds

A Dynamic Zigbee Protocol for Reducing Power Consumption

  • Kwon, Do-Keun;Chung, Ki Hyun;Choi, Kyunghee
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • One of the obstacles preventing the Zigbee protocol from being widely used is the excessive power consumption of Zigbee devices in low bandwidth and low power requirement applications. This paper proposes a protocol that resolves the power efficiency problem. The proposed protocol reduces the power consumption of Zigbee devices in beacon-enabled networks without increasing the time taken by Zigbee peripherals to communicate with their coordinator. The proposed protocol utilizes a beacon control mechanism called a "sleep pattern," which is updated based on the previous event statistics. It determines exactly when Zigbee peripherals wake up or sleep. A simulation of the proposed protocol using realistic parameters and an experiment using commercial products yielded similar results, demonstrating that the protocol may be a solution to reduce the power consumption of Zigbee devices.

Mutual Authentication Protocol Using a Low Power in the Ubiquitous Computing Environment

  • Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.91-94
    • /
    • 2004
  • Ubiquitous sensor network is to manage and collect information autonomously by communicating user around device. Security requirements in Ubiquitous based on sensor network are as follows: a location of sensor, a restriction of performance by low electric power, communication by broadcasting, etc. We propose new mutual authentication protocol using a low power of sensor node. This protocol solved a low power problem by reducing calculation overload of sensor node using two steps, RM(Register Manager) and AM(Authentication Manager). Many operations performing the sensor node itself have a big overload in low power node. Our protocol reduces the operation number from sensor node. Also it is mutual authentication protocol in Ubiquitous network, which satisfies mutual authentication, session key establishment, user and device authentication, MITM attack, confidentiality, integrity, and is safe the security enemy with solving low electric power problem.

  • PDF

Design and Implementation of a Wireless Sensor Network Protocol for a Smart Power Outlet System (스마트 아웃렛 시스템을 위한 무선 센서네트워크 프로토콜 설계 및 구현)

  • Chung, Han-Su;Moon, Jung-Ho;Park, Sung-Wook;Lee, Hyung-Bong;Park, Lae-Jeong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.291-300
    • /
    • 2012
  • This paper deals with the design and implementation of wireless sensor network protocol for smart power outlet system capable of fire detection, power monitoring, standby power cutoff, and home automation. The proposed protocol integrates both the CSMA and the TDMA protocols for low power consumption and good scalability. A prototype smart power outlet system employing the proposed protocol and a simple home automation network including the power outlet system have been implemented for evaluating the feasibility of the proposed protocol The result shows that the proposed protocol allows the power outlet system to be scalable with high power efficiency.

A Study on Comparison of Control Methods in Wireless Power Transfer Systems (무선전력전송시스템 제어 기술 비교 연구)

  • Jang, Dong-won;Cho, In-Kwee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.113-116
    • /
    • 2015
  • This paper presented about the system for controlling a wireless power transmission using bluetooth protocol. Bluetooth protocol has been applied in many fields that communicate with data and audio signal in short range. Recently, however, Bluetooth low energy(BLE) more simple than the existing protocol is standardized and is widely used in medical applications and consumer electronics that handle small amount of sensor data and transmit by the low power control signal. It has also been adopted as the standard for the control in the wireless power transfer system. In this paper, We analysed and described the bluetooth low energy protocol techniques for controlling the wireless power transfer system.

  • PDF

Dynamic Routing Protocol for Low-power and Ad-hoc Networks (저전력 애드혹 네트워크를 위한 동적 라우팅 프로토콜)

  • Hwang, So-Young;Yu, Don-Hui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.197-200
    • /
    • 2011
  • Many routing protocols have been proposed for low-power and ad-hoc networks where energy awareness and reliability are essential design issues. This paper proposes a dynamic routing protocol for low-power and ad-hoc networks. A dynamic path cost function is defined considering the constraints and characteristics of low-power and ad-hoc networks. The cost function can be applied flexibly depending on the characteristics of the networks. The performance of the proposed method is evaluated using a QualNet network simulator.

  • PDF

A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate

  • Rezvani, Sanaz;Ghorashi, S. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2302-2322
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) are introduced as an enabling technology in tele-health for patient monitoring. Designing an efficient Medium Access Control (MAC) protocol is the main challenge in WBANs because of their various applications and strict requirements such as low level of energy consumption, low transmission delay, the wide range of data rates and prioritizing emergency data. In this paper, we propose a new MAC protocol to provide different requirements of WBANs targeted for medical applications. The proposed MAC provides an efficient emergency response mechanism by considering the correlation between medical signals. It also reduces the power consumption of nodes by minimizing contention access, reducing the probability of the collision and using an efficient synchronization algorithm. In addition, the proposed MAC protocol increases the data rate of the nodes by allocating the resources according to the condition of the network. Analytical and simulation results show that the proposed MAC protocol outperforms IEEE 802.15.4 MAC protocol in terms of power consumption level as well as the average response delay. Also, the comparison results of the proposed MAC with IEEE 802.15.6 MAC protocol show a tradeoff between average response delay and medical data rate.

Transient Multipath routing protocol for low power and lossy networks

  • Lodhi, Muhammad Ali;Rehman, Abdul;Khan, Meer Muhammad;Asfand-e-yar, Muhammad;Hussain, Faisal Bashir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2002-2019
    • /
    • 2017
  • RPL routing protocol for low-power and lossy networks is an Internet Engineering Task Force (IETF) recommended IPv6 based protocol for routing over Low power Lossy Networks (LLNs). RPL is proposed for networks with characteristics like small packet size, low bandwidth, low data rate, lossy wireless links and low power. RPL is a proactive routing protocol that creates a Directed Acyclic Graph (DAG) of the network topology. RPL is increasingly used for Internet of Things (IoT) which comprises of heterogeneous networks and applications. RPL proposes a single path routing strategy. The forwarding technique of RPL does not support multiple paths between source and destination. Multipath routing is an important strategy used in both sensor and ad-hoc network for performance enhancement. Multipath routing is also used to achieve multi-fold objectives including higher reliability, increase in throughput, fault tolerance, congestion mitigation and hole avoidance. In this paper, M-RPL (Multi-path extension of RPL) is proposed, which aims to provide temporary multiple paths during congestion over a single routing path. Congestion is primarily detected using buffer size and packet delivery ratio at forwarding nodes. Congestion is mitigated by creating partially disjoint multiple paths and by avoiding forwarding of packets through the congested node. Detailed simulation analysis of M-RPL against RPL in both grid and random topologies shows that M-RPL successfully mitigates congestion and it enhances overall network throughput.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in WSN (WSN에서 전파범위 기반의 저 전력 클러스터링 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.75-82
    • /
    • 2015
  • Recently, lot of researches on multi-level protocol have been done to balance the sensor node energy consumption of WSN and to improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been studied to improve energy efficiency and apply it in real system. In multi-hop protocol, we assume that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this. In this paper, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, the proposed protocol is energy efficient and can be effectively used in the wireless sensing network.

Improved Routing Metrics for Energy Constrained Interconnected Devices in Low-Power and Lossy Networks

  • Hassan, Ali;Alshomrani, Saleh;Altalhi, Abdulrahman;Ahsan, Syed
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2016
  • The routing protocol for low-power and lossy networks (RPL) is an internet protocol based routing protocol developed and standardized by IETF in 2012 to support a wide range of applications for low-power and lossy-networks (LLNs). In LLNs consisting of resource-constrained devices, the energy consumption of battery powered sensing devices during network operations can greatly impact network lifetime. In the case of inefficient route selection, the energy depletion from even a few nodes in the network can damage network integrity and reliability by creating holes in the network. In this paper, a composite energy-aware node metric ($RER_{BDI}$) is proposed for RPL; this metric uses both the residual energy ratio (RER) of the nodes and their battery discharge index. This composite metric helps avoid overburdening power depleted network nodes during packet routing from the source towards the destination oriented directed acyclic graph root node. Additionally, an objective function is defined for RPL, which combines the node metric $RER_{BDI}$ and the expected transmission count (ETX) link quality metric; this helps to improve the overall network packet delivery ratio. The COOJA simulator is used to evaluate the performance of the proposed scheme. The simulations show encouraging results for the proposed scheme in terms of network lifetime, packet delivery ratio and energy consumption, when compared to the most popular schemes for RPL like ETX, hop-count and RER.

An Energy-Efficient Asynchronous Sensor MAC Protocol Design for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 비동기 방식의 센서 MAC 프로토콜 설계)

  • Park, In-Hye;Lee, Hyung-Keun;Kang, Seok-Joong
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 2012
  • Synchronization MAC Protocol such as S-MAC and T-MAC utilize duty cycling technique which peroidically operate wake-up and sleep state for reducing energy consumption. But synchronization MAC showed low energy efficiency because of additional control packets. For better energy consumption, Asychronization MAC protocols are suggested. For example, B-MAC, and X-MAC protocol adopt Low Power Listening (LPL) technique with CSMA algorithm. All nodes in these protocols joining a network with independent duty cycle schedules without additional synchronization control packets. For this reason, asynchronous MAC protocol improve energy efficiency. In this study, a low-power MAC protocol which is based on X-MAC protocol for wireless sensor network is proposed for better energy efficiency. For this protocol, we suggest preamble numbering, and virtual-synchronization technique between sender and receive node. Using TelosB mote for evaluate energy efficiency.