• Title/Summary/Keyword: Low Power Devices

Search Result 1,419, Processing Time 0.035 seconds

A Method for Enhancing Data Transmission Performance in the Power-Line Communication Channel with Low-Voltage Surge Protective Devices (저압용 SPD가 설치된 전력선통신에서 데이터전송 성능 향상)

  • Choi, Jong-Min;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • Low-Voltage power lines should equip surge protection devices which protect electronic equipments and human lives against lightning and abnormal voltages. Data transmission capacity of the power line is determined by frequency characteristics of the surge protective devices. To analyze the effects of surge protective devices on the data transmission performance, various combinations of installation methods are tested which include ZnO varistor elements that is compatible with class I, class II and class III. The result claims that ZnO varistor for class III is found to be one of the main factors that deteriorates the transmission performance. To overcome this problem a serial connection methed between Gap type SPD and ZnO varistor is proposed. With the proposed scheme, laboratory experimental results show that the data transmission performance can be improved up to 91.9[%] with proper SPD combination.

High-Speed Low-Power Junctionless Field-Effect Transistor with Ultra-Thin Poly-Si Channel for Sub-10-nm Technology Node

  • Kim, Youngmin;Lee, Junsoo;Cho, Yongbeom;Lee, Won Jae;Cho, Seongjae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • Recently, active efforts are being made for future Si CMOS technology by various researches on emerging devices and materials. Capability of low power consumption becomes increasingly important criterion for advanced logic devices in extending the Si CMOS. In this work, a junctionless field-effect transistor (JLFET) with ultra-thin poly-Si (UTP) channel is designed aiming the sub-10-nm technology for low-power (LP) applications. A comparative study by device simulations has been performed for the devices with crystalline and polycrystalline Si channels, respectively, in order to demonstrate that the difference in their performances becomes smaller and eventually disappears as the 10-nm regime is reached. The UTP JLFET would be one of the strongest candidates for advanced logic technology, with various virtues of high-speed operation, low power consumption, and low-thermal-budget process integration.

Selecting a Synthesizable RISC-V Processor Core for Low-cost Hardware Devices

  • Gookyi, Dennis Agyemanh Nana;Ryoo, Kwangki
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1406-1421
    • /
    • 2019
  • The Internet-of-Things (IoT) has been deployed in almost every facet of our day to day activities. This is made possible because sensing and data collection devices have been given computing and communication capabilities. The devices implement System-on-Chips (SoCs) that incorporate a lot of functionalities, yet they are severely constrained in terms of memory capacitance, hardware area, and power consumption. With the increase in the functionalities of sensing devices, there is a need for low-cost synthesizable processors to handle control, interfacing, and error processing. The first step in selecting a synthesizable processor core for low-cost devices is to examine the hardware resource utilization to make sure that it fulfills the requirements of the device. This paper gives an analysis of the hardware resource usage of ten synthesizable processors that implement the Reduced Instruction Set Computer Five (RISC-V) Instruction Set Architecture (ISA). All the ten processors are synthesized using Vivado v2018.02. The maximum frequency, area, and power reports are extracted and a comparison is made to determine which processor is ideal for low-cost hardware devices.

Reforming Method for the Technical Regulations of Extremely Low Power Devices (국내 미약 무선국 기술기준 개선방안)

  • Kang, Gun-Hwan;Oh, Se-Jun;Lee, Jae-Chun;Park, Duk-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.391-396
    • /
    • 2005
  • In this dissertation, we discuss the trends of policy and analyze the technical regulation for the extremely low power devices in other countries. In addition, this paper proposes a draft revision of technical regulation for new efficient electric field strength of extremely low power devices in accordance with the technical requirement of Electromagnetic Compatibility. Based on these researches, the contents of this study will be useful to contribute a domestic efficient expansion and development of extremely low power devices and strengthen a competitiveness on international communication markets.

  • PDF

Prediction of the Intermodulation Interference on the AMPS Receiver Exposed to Radiation from the Low Power Radio Devices (소출력 무선기기의 방사에 노출된 AMPS 수신기의 상호변조 간섭 예측)

  • Kim, Che-Young;Kim, Dang-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1242-1250
    • /
    • 2008
  • In this paper, we predicted the radiation field strength from the low power radio devices to force the radio interference on the AMPS receiver. The predicted value of 79.13[$dB{\mu}V/m$] is the upper value of radiation against the intermodulation interference emanated from the low power radio devices. To show the validity of the suggested values theoretical analysis on intermodulation and modeling of the AMPS receiver are performed, and also measurements on the AMPS receiver IC are carried out. The resultant numerals show the good match between them within the allowable tolerances.

A Study on High-voltage Low-power Power MOSFET of Optimization for Industrial Motor Drive (산업용 모터 구동을 위한 고내압 저전력 Power MOSFET 최적화 설계에 관한 연구)

  • Kim, Bum-June;Chung, Hun-Suk;Kim, Seong-Jong;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Power MOSFET is develop in power savings, high efficiency, small size, high reliability, fast switching, low noise. Power MOSFET can be used high-speed switching transistors devices. Recently attention to the motor and the application of various technologies. Power MOSFET is devices the voltage-driven approach switching devices are design to handle on large power, power supplies, converters, motor controllers. In this paper, design the 600 V Planar type, and design the trench type for realization of low on-resistance. For both structures, by comparing and analyzing the results of the simulation and characterization.

Interference Analysis between DTV Relay System and Low Power Device for Efficient Utilization of TV White Space (TV 유휴대역의 효율적인 사용을 위한 DTV 중계기와 소출력 기기 사이의 간섭 분석)

  • Kim, Yoon Hyun;Lee, Kyung Sun;Yang, Jae Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.69-74
    • /
    • 2012
  • According to convert from analogue TV signal to Digital TV signal on 31 December 2012, research on utilization of TV white space (TVWS) has been being actively proceed. It is expected that various low power devices use the TVWS, so interference between DTV relay system and low power devices using in TVWS can be occurred. Therefore, in this paper, we analyzed the interference between DTV relay system and low power devices. So, we calculated a minimum coupling loss (MCL) and compare the resulting value with a path loss for determining whether there exists a potential interference or not. The minimum separation distance is determined when the path loss is larger than the MCL. In the simulation results, we setup the victim and interferer system as DTV relay system and low power devices, respectively.

Fabrication of triboelectric nanogenerator for self-sufficient power source application (자가발전활용을 위한 마찰전기 나노발전소자의 제작)

  • Shin, S.Y.;Kim, S.J.;Saravanakumar, Balasubramaniam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

A 1.8GHz Low Voltage CMOS RF Down-Conversion Mixer (1.8GHz 대역의 저전압용 CMOS RF하향변환 믹서 설계)

  • 김희진;이순섭;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.61-64
    • /
    • 2000
  • This paper describes a RF Down-Conversion Mixer for mobile communication systems. This circuit achieves low voltage operation and low power consumption by reducing stacked devices of conventional gilbert cell mixer. In order to reduce stacked devices, we use source-follower structure. The proposed RF Down-Conversion mixer operates up to 1.85GHz at 1.5V power supply with 0.25um CMOS technology and consumes 2.2mA.

  • PDF

Interference Effects of Low-Power Devices on the UE Throughput of a CR-Based LTE System

  • Kim, Soyeon;Sung, Wonjin
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.353-359
    • /
    • 2014
  • Recently, the use of mobile devices has increased, and mobile traffic is growing rapidly. In order to deal with such massive traffic, cognitive radio (CR) is applied to efficiently use limited-spectrum resources. However, there can be multiple communication systems trying to access the white space (unused spectrum), and inevitable interference may occur to cause mutual performance degradation. Therefore, understanding the effects of interference in CR-based systems is crucial to meaningful operations of these systems. In this paper, we consider a long-term evolution (LTE) system using additional spectra by accessing the TV white space, where low-power devices (LPDs) are licensed primary users, in addition to TV broadcasting service providers. We model such a heterogeneous system to analyze the co-existence problem and evaluate the interference effects of LPDs on LTE user equipment (UE) throughput. We then present methods to mitigate the interference effects of LPDs by 'de-selecting' some of the UEs to effectively increase the overall sector throughput of the CR-based LTE system.