• Title/Summary/Keyword: Low LO-Power

Search Result 154, Processing Time 0.024 seconds

Development of V-band Wireless Transceiver using MMIC Modules (MMIC 모듈을 이용한 V-band 무선 송수신 시스템의 구축)

  • Lee, Sang-Jin;An, Dan;Lee, Mun-Kyo;Go, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band Microwave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_1$ $_{dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a P $_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a P $_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

  • PDF

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

  • An, Dan;Lee, Mun-Kyo;Lee, Sang-Jin;Ko, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band millimeter-wave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_{1dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a $P_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a $P_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

A low-noise transceiver design for 10GHz band motion sensor (인체감지 센서용 저 잡음 10GHz대역 송수신기 설계)

  • Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.313-318
    • /
    • 2012
  • In this study, we propose a low-noise transceiver for 10GHz motion sensor. The transceiver presented here has a circuit(Hittite HMC908LC5) that is composed of a two way-$0^{\circ}$ power splitter(the 1:2 block) and a $90^{\circ}$ Hybrid. The noise reduction circuit utilizes an LNA followed by an image reject mixer which is driven by an LO buffer amplifier. A modeling and analysis have been pursued using CST MWS. A prototype sensor was manufactured to measure the performance and experimental results show that the proposed sensor is good enough to use for a accurate motion sensor.

Low Conversion Loss 94 GHz MHEMT MIMIC Resistive Mixer (낮은 변환손실 특성의 94 GHz MHEMT MIMIC Resistive 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Oh Jung-Hun;Baek Yong-Hyun;Kim Sung-Chan;Park Jung-Dong;Shin Dong-Hoon;Park Hyung-Moo;Park Hyun-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.61-68
    • /
    • 2005
  • In this paper, low conversion loss 94 GHz MIMIC resistive mixer was designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC's, was fabricated. The DC characteristics of MHEMT are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 189 GHz and the maximum oscillation frequency(fmax) is 334 GHz. A 94 GHz resistive mixer was fabricated using $0.1{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the 94 GHz resistive mixer was 8.2 dB at an LO power of 10 dBm. P1 dB(1 dB compression point) of input and output were 9 dBm and 0 dBm, respectively. LO-RF isolations of resistive mixer was obtained 15.6 dB at 94.03 GHz. We obtained in this study a lower conversion loss compared to some other resistive mixers in W-band frequencies.

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

A MB-OFDM UWB 0.18-μm CMOS RF Front-End Receiver

  • Kim, Chang-Wan
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • An RF front-end dual-conversion receiver for $3{\sim}5\;GHz$ MB-OFDM UWB systems is implemented in $0.18\;{\mu}m$ CMOS technology. The receiver includes a two-stage UWB LNA, an RF mixer, an IF I/Q mixer, and a frequency synthesizer. The proposed receiver adopts the dual-conversion architecture to mitigate the burden of design of the frequency synthesizer. Accordingly, the proposed frequency synthesizer generates four LO tones from only one VCO. The receiver front-end achieves power gain of 16.3 to 21 dB, NF of 7 to 7.6 dB over $3{\sim}5\;GHz$, and IIP3 of -21 dBm, while consuming 190 mW from a 1.8 V supply.

Fabrication of RFID Reader RF Transceiver for 900 MHz Bandwidth (900 MHz 대역 RFID 리더용 RF 트랜시버 설계 및 제작)

  • Kim Bo-Joon;Kim Chang-Woo;Kim Nam Yoon;Kim Young-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.58-64
    • /
    • 2006
  • A 900-MHz band transceiver has been developed for RFID reader applications. In the transmitter, a GaAs SPST switch is used for high speed switching and low power consumption. In the receiver, a double balanced mixer is used to compress even-harmonic products. The ASK demodulator which consists of an active filter and comparator is used to reject the unwanted in band interferers. The transceiver produces a maximum transmitting power of 30 dBm and exhibits an 5 m communication range with a 6-dBi gain antenna.

Design of Engineering Model Oscillator with Low Phase Noise for Ka-band Satellite Transponder (위상잡음을 개선한 Ka-band 위성 중계기용 Engineering Model 발진기의 설계)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • The EM(Engineering Model) VCO(Voltage Controlled Oscillator) is nonlinear designed for LO(Local Oscillator) of Ka-band satellite transponder. The microstripline coupled with dielectric resonator is implemented as a high impedance inverter to improve the phase noise, and the quality factor of resonant circuit can be transferred to active device with the enhanced loaded quality factor. The developed VCO has the oscillating tuning range of 9.7965~9.8032 GHz for the control voltage range of 0~12 V. This VCO requires the DC power of 8 V and 17 mA. The phase noise characteristics are -96.51 dBc/Hz @10 KHz and -116.5 dBc/Hz @100 KHz, respectively. And, the output power of 7.33 dBm is measured.

A Dual-Mode 2.4-GHz CMOS Transceiver for High-Rate Bluetooth Systems

  • Hyun, Seok-Bong;Tak, Geum-Young;Kim, Sun-Hee;Kim, Byung-Jo;Ko, Jin-Ho;Park, Seong-Su
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • This paper reports on our development of a dual-mode transceiver for a CMOS high-rate Bluetooth system-onchip solution. The transceiver includes most of the radio building blocks such as an active complex filter, a Gaussian frequency shift keying (GFSK) demodulator, a variable gain amplifier (VGA), a dc offset cancellation circuit, a quadrature local oscillator (LO) generator, and an RF front-end. It is designed for both the normal-rate Bluetooth with an instantaneous bit rate of 1 Mb/s and the high-rate Bluetooth of up to 12 Mb/s. The receiver employs a dualconversion combined with a baseband dual-path architecture for resolving many problems such as flicker noise, dc offset, and power consumption of the dual-mode system. The transceiver requires none of the external image-rejection and intermediate frequency (IF) channel filters by using an LO of 1.6 GHz and the fifth order onchip filters. The chip is fabricated on a $6.5-mm^{2}$ die using a standard $0.25-{\mu}m$ CMOS technology. Experimental results show an in-band image-rejection ratio of 40 dB, an IIP3 of -5 dBm, and a sensitivity of -77 dBm for the Bluetooth mode when the losses from the external components are compensated. It consumes 42 mA in receive ${\pi}/4-diffrential$ quadrature phase-shift keying $({\pi}/4-DQPSK)$ mode of 8 Mb/s, 35 mA in receive GFSK mode of 1 Mb/s, and 32 mA in transmit mode from a 2.5-V supply. These results indicate that the architecture and circuits are adaptable to the implementation of a low-cost, multi-mode, high-speed wireless personal area network.

  • PDF

Wireless Network Safety Management System on LPWA-based Tram Roads (LPWA 기반 트램 노면의 무선통신망 안전관리 시스템)

  • Jung, Ji-Sung;Lee, Jae-Ki;Park, Jong-Kweon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.57-68
    • /
    • 2018
  • A system to prevent disasters by collecting and analyzing environmental information such as road surface sedimentation, sinkholes, collapse risk of bridges, temperature and humidity around tram station is continuously monitored by monitoring the condition of road surface when constructing tram which is one of the urban railways. In this paper, we propose a wireless network security management system for tram roads based on LPWA that can recognize risk factors of road surface, bridge and tram station of tram in advance and prevent risk. The proposed system consists of a sensor node that detects the state of the tram road surface, a gateway that collects sensor information, and a safety management system that monitors the safety and environmental conditions of the tram road surface, and applies the low power long distance communication technology. As a result of comparing the proposed system with the LTE system in the field test, it was confirmed that there is no significant difference between the sensor information value and the critical alarm level in the monitoring system.