• 제목/요약/키워드: Low Frequency Instability

검색결과 133건 처리시간 0.025초

표면연소기의 저주파 연소진동음의 특성 (Characteristics of Low-Frequency Combustion-driven Oscillation in a Surface Burner)

  • 한희갑;이근희;권영필
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.991-997
    • /
    • 2000
  • The objective of this study is to examine the onset condition and the frequency characteristics of the low-frequency combustion oscillation in a surface burner. For this purpose, extensive parametric studies have been performed experimentally and the effects of size of each section, the equivalence ratio, and the entrance velocity on oscillatory behavior explored. The experimental results were discussed in comparison with the other combustors associated tilth the low-frequency combustion oscillation. The combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. The oscillation frequency is dependent not on the burner geometry but on the equivalence ratio and the combustion load. Low-frequency combustion mode was formed to be divided into two different modes, named C1 and C2 respectively. Two modes occurred individually, simultaneously or transitionally according to the equivalence ratio and combustion load. The characteristics of low-frequency oscillation is different from each other depending on the type of combustors. The surface burner has also its own characteristics of low -frequency oscillation.

  • PDF

하이브리드 로켓 불안정성 II (Hybrid Rocket Instability II)

  • 이정표;이선재;김영남;문희장;성홍계;김진곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.86-90
    • /
    • 2012
  • 본 연구에서는 '하이브리드 로켓 불안정성 I'에 이어 하이브리드 로켓에서 발생할 수 있는 연소불안 정성에 대해 연구하였다. 하이브리드 로켓 연소기 내부에 와류가 발생할 수 있도록 연소기를 설계하여 연소시험을 수행하였고, 연소실 압력 공진 주파수의 다이아프램 유 무에 따른 특성, 연료 길이에 따른 특성, 연료 포트 직경에 따른 특성, 다이아프램 직경에 따른 특성, 노즐목 직경에 따른 특성, 산화제 유량 변화에 따른 특성에 대한 연구를 수행하였다. 본 연구의 주요 연소실 압력 공진 주파수는 Vortex shedding으로 판단되며, Hybrid low frequency와 Helmholtz mode가 또다른 공진주파수 인 것으로 판단된다.

  • PDF

Transient Analysis of Hybrid Rocket Combustion by the Zeldovich-Novozhilov Method

  • Lee, Changjin;Lee, Jae-Woo;Byun, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1572-1582
    • /
    • 2003
  • Hybrid rocket combustion has a manifestation of stable response to the perturbations compared to solid propellant combustion. Recently, it has revealed that the low frequency combustion instability about 10 Hz was occurred mainly due to thermal inertia of solid fuel. In this paper, the combustion response function was theoretically derived by use of ZN (Zeldovich-Novozhilov) method. The result with HTPB/LOX combination showed a quite good agreement in response function with previous works and could predict the low frequency oscillations with a peak around 10 Hz which was observed experimentally. Also, it was found that the amplification region in the frequency domain is independent of the regression rate exponent n but showed the dependence of activation energy. Moreover, the response function has shown that the hybrid combustion system was stable due to negative heat release of solid fuel for vaporization, even though the addition of energetic ingredients such as AP and Al could lead to increase heat release at the fuel surface.

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

평면 충돌제트의 불안정특성(2)-원통음- (Characteristics of Plane Impinging Jets(2)- Cylinder-tone -)

  • 권영필;김욱;이주원
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.105-110
    • /
    • 2004
  • The objective of this study is to obtain the instability characteristics of the plane jet impinging on circular cylinder associated with the cylinder-tone. It is found that the characteristics depends upon he ratio of the cylinder diameter to the nozzle width, D/h, and the jet velocity. When the ratio is oderate the cylinder-tone is similar to the edge-tone. With increase of the ratio, its characteristics ecomes similar to that of the plate-tone in which only the high-speed tone associated with turbulent et is generated. When D/h 〈1. the frequency range, especially the lower limit of frequency, is ignificantly influenced by the cylinder diameter. At around D/h = 1/2, while low speed tones are nduced with the antisymmetric mode of instability and affected by the vortex shedding from the ylinder, high-speed tones are generated, at first, with the symmetric mode of instability. and then, ith antisymmetric mode, as the jet velocity increases.

Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구 (Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements)

  • 정광석;김영수;박정규;양승동;김유미;윤호진;한인식;이희덕;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.545-549
    • /
    • 2010
  • Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (${\Delta}V_{th}$) than those with thickness of 40 nm. However the ${\Delta}V_{th}$ is completely relaxed after the removal of DC stress. In order to investigate the cause of this threshold voltage instability, we accomplished the 1/f noise measurement and found that ZnO TFTs exposed the mobility fluctuation properties, in which the noise level increases as the gate bias rises and the normalized drain current noise level($S_{ID}/{I_D}^2$) of the active layer of thickness 80 nm is smaller than that of active layer thickness of thickness 40 nm. This result means that the 80 nm thickness TFTs have a smaller density of traps. This result correlated with the physical characteristics analysis performmed using XRD, which indicated that the grain size increases when the active layer thickness is made thicker. Consequently, the number of preexisting traps in the device increases with decreasing thickness of the active layer and are related closely to the $V_{th}$ instability under electrical stress.

관형 연소기의 열 음향학적 특성에 관한 실험적 연구 (Characteristics of thermoacoustic oscillation in ducted flame burner)

  • 조상연;이수갑
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

Simulation study on the nonlinear evolution of EMIC instability

  • 라기철;류창모
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.119.2-119.2
    • /
    • 2012
  • Charged particle energization is an outstanding problem in space physics. This paper investigates the nonlinear dynamics of Alfve'n-cyclotron waves accompanying particle heating processes and the drift Alfv'en-cyclotron (or EMIC) instability associated with a current disruption event on 29 January 2008 observed with THEMIS satellite by means of a particle-in-cell simulation. The simulation shows that the drift Alfv'en-cyclotron instabilities are excited in two regimes, a relatively low frequency mode propagating in a quasi-perpendicular direction while the second high-frequency branch propagating in a predominantly parallel propagation direction, which is consistent with observation as well as earlier theories. It is shown that parametric decay processes lead to an inverse cascade of Alfv'en-cyclotron waves and the generation of ion-acoustic waves by decay instability. It is also shown that the nonlinear decay processes are accompanied by small perpendicular heating and parallel cooling of the protons, and a pronounced parallel heating of the electrons.

  • PDF

자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구 (Study on Thermoelastic Instability of Automotive Disc Brakes)

  • 최지훈;김도형;이인
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석 (Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach)

  • 홍수민;김대식
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.