• Title/Summary/Keyword: Low Flow Rate

Search Result 1,938, Processing Time 0.031 seconds

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

Attenuation of Background Molecular Ions and Determination of Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry at Cool Plasma Condition

  • 박창준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.706-710
    • /
    • 1997
  • Isotope ratios of K, Ca, Cr and Fe are measured at cool plasma condition generated using high carrier flow rate and relatively low RF power of 900 W. Background molecular ions are suppressed to below 100 counts which give isobaric interference to the analytes. The background ions show different attenuation characteristics at increased carrier flow rate and hence for each element different carrier flow rate should be used to measure isotope ratios without isobaric interference. Isotope ratios are measured at both scan and peak-hopping modes and compared with certified or accepted ratios. The measured isotope ratios show some mass discrimination against low mass due to low ion energy induced from a copper shield to eliminate capacitive coupling of plasma with load coil.

The Impact of COVID-19, Day-of-the-Week Effect, and Information Flows on Bitcoin's Return and Volatility

  • LIU, Ying Sing;LEE, Liza
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.45-53
    • /
    • 2020
  • Past literatures have not studied the impact of real-world events or information on the return and volatility of virtual currencies, particularly on the COVID-19 event, day-of-the-week effect, daily high-low price spreads and information flow rate. The study uses the ARMA-GARCH model to capture Bitcoin's return and conditional volatility, and explores the impact of information flow rate on conditional volatility in the Bitcoin market based on the Mixture Distribution Hypothesis (Clark, 1973). There were 3,064 samples collected during the period from 1st of January 2012 to 20th April, 2020. Empirical results show that in the Bitcoin market, a daily high-low price spread has a significant inverse relationship for daily return, and information flow rate has a significant positive relationship for condition volatility. The study supports a significant negative relationship between information asymmetry and daily return, and there is a significant positive relationship between daily trading volume and condition volatility. When Bitcoin trades on Saturday & Sunday, there is a significant reverse relationship for conditional volatility and there exists a day-of-the-week volatility effect. Under the impact of COVID-19 event, Bitcoin's condition volatility has increased significantly, indicating the risk of price changes. Finally, the Bitcoin's return has no impact on COVID-19 events and holidays (Saturday & Sunday).

Radial Thrust of Single-Blade Centrifugal Pump

  • Nishi, Yasuyuki;Fukutomi, Junichiro;Fujiwara, Ryota
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • Single-blade centrifugal pumps are widely used as sewage pumps. However, the impeller of a single-blade pump is subjected to strong radial thrust during pump operation because of the geometrical axial asymmetry of the impeller. Therefore, to improve pump reliability, it is necessary to quantitatively understand radial thrust and elucidate the behavior and mechanism of thrust generating. This study investigates the radial thrust acting up on a single-blade centrifugal impeller by conducting experiments and CFD analysis. The results show that the fluctuating component of radial thrust increases as the flow rate deviates from the design flow rate to low or high value. Radial thrust was modeled by a combination of three components, inertia, momentum, and pressure by applying an unsteady conservation of momentum to the impeller. The sum of these components agrees with the radial thrust calculated by integrating the pressure and the shearing stress on the impeller surface. The behavior of each component was shown, and the effects of each component on radial thrust were clarified. The pressure component has the greatest effect on the time-averaged value and the fluctuating component of radial thrust. The time-averaged value of the inertia component is nearly 0, irrespective of the change in the flow rate. However, its fluctuating component has a magnitude nearly comparable with the pressure component at a low flow rate and slightly decreased with the increase in flow rate.

A Study on the Analytical Characterizations of the Low Flow-Low Power ICP-AES (Low flow-low power 유도결합 플라즈마 원자방출 분광법에서의 분석적 특성에 관한 연구)

  • Yang, Hae Soon;Kim, Young Man;Kim, Sun Tae;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.253-260
    • /
    • 1994
  • Analytical characteristics of low power-low flow inductively coupled plasma-atomic emission spectometry(ICP-AES) has been studied. Although the net intensity of the low power ICP is lower than the moderate power ICP, the signal to background ratio becomes higher since the background intensity decreases with decreasing the RF power. The detection limit of the low power ICP is comparable with that of the moderate power ICP. The dynamic range of the calibration curve of the low power ICP is $10^4{\sim}10^5$. The ionization interferences by alkali metals increase with increasing the carrier gas flow rate, but the effects are not varied significantly with the RF power.

  • PDF

An experimental study on cooling characteristics of mist impinging jet on a flat plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Sang-Uk;Chung, Won-Seok;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

Compressor Performance with Variation of Diffuser Vane Angle (디퓨저 베인각의 변화에 따른 압축기 성능 특성)

  • Shin, Y. H.;Kim, K. H.;Bae, M. H,;Kim, J. H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.36-43
    • /
    • 2000
  • This study presents the centrifugal compressor performance for three different vane stagger angles and wall pressure distribution within vaned diffuser channels, and is also discussed about the stability with respect to the compressor components. As the vane stagger angle decreases, the flow rate for the stall onset decreases, and higher pressure can be obtained at the low flow rate region, however, the effective operation range of the compressor decreases because of the blockage effect of the diffuser vane. Low pressure pocket within the vaned diffuser channel moves from the pressure side of leading edge to the suction side as the flow rate decreases. The compressor system stability mainly depends on that of the diffuser.

  • PDF

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

Tip Clearance Effect of Low Mass Flow Rate High Specific Speed Centrifugal Impeller (저유량 고비속도 원심압축기 임펠러에서의 팁간극에 따른 효과)

  • Im, Kang-Soo;Kim, Yang-Gu;Kim, Kyi-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.240-243
    • /
    • 2008
  • In this paper, the design of Centrifugal Compressor which is used in sizes 50 horse power has 8 pressure ratio and numerical analysis of the flow within compressor varying tip clearance length are performed. To get high pressure ratio with low power the exit height of impellers is low but compressor has very high speed of revolution. So compressor has high specific speed although mass flow rate is very small. The shape of impellers at the first stage is carried out. Flow and performance characteristics of impellers has been analyzed by using a commercial CFD program, $Fine^{TM}$/turbo. The result shows that loss coefficient is affected by tip clearance length and compressor has proper tip clearance length. It is possible to decrease loss by selecting apt tip clearance length.

  • PDF

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.