High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.
Pool boiling heat transfer characteristics of R-134a were investigated in titanium plain and low finned tubes. The diameter of test tube was 15.88 mm and the fin density was 33 fpi. Tests were conducted at saturation temperatures of $20^{\circ}C$ and $30^{\circ}C$. Heat fluxes varied from 5000 W/$m^2$ to 50,000 W/$m^2$ based on surface area of the plain tube. The pool boiling heat transfer coefficients of the titanium horizontal plain tube are lower than those of the copper plain tube by $8.2\%$. The boiling heat transfer coefficients of the low finned tube are averagely higher than those of the plain tubes by $34\%$. The average deviation of the Slipcevic correlation from the present data for the low finned tube is $20\%$.
The present paper reports the method for evaluation of heat-transfer performance of finned tube heat exchangers in a low Reynolds number regime (Re = $160\~800$) and also reports the data of heat transfer and pressure loss taken from a finned tube heat exchanger with/without vortex generators (VGs) installed as a heat-transfer enhancement device. The evaluation is based on the modified single blow method conducted in a specially designed low Reynolds number duct. Three different test core geometries, i.e., fin only, fin-tube without VGs and that with VGs, are studied here. The data of heat transfer and pressure loss taken from the fin only geometry agree well with the empirical correlations, thus validating the present method as used for low Reynolds number regime. The data taken from the finned tube geometries with and without VGs are presented and compared to examine the effect of VGs in the low Reynolds number regime.
Characteristics of heat transfer in a smooth and finned tube located vertically in atmospheric fluidized bed combustor which uses low grade anthracite coals was studied. Experiments to investigate the characteristics of heat transfer between smooth and finned tube are carried out and the results depend on particle size, fluidizing air velocity and bed temperature are summarized. It is found that heat transfer coefficient of the smooth and finned tube increases with decrease in particle diameter and increase in bed temperature. Furthermore, it is noted that heat transfer coefficient increase at the first with increase in the velocity of fluidizing air and tends to decrease at a certain fluidizing air velocity. The increase of heat transfer coefficient for the finned tube is appeared to be increased in 30% compared to that for the smooth tube.
Phase change materials (PCM) are able to store a large amount of latent heat, and can be applied to thermal energy storage systems. In a PCM, it takes a long time to store heat in the storage system because of the low thermal conductivity. In this study, a finned-tube-in-tank heat exchanger was applied to a PCM thermal energy storage system to increase heat transfer efficiency. The effects of geometric and operating parameters were investigated, and the results were compared with those of the tube-in-tank heat exchanger. The finned-tube-in-tank heat exchanger showed higher heat transfer effectiveness than the tube-in-tank heat exchanger. The heat exchange effectiveness of the storage tank was determined as a function of the average NTU.
This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.
An experimental study was conducted to investigate the heat transfer characteristics of a circular finned-tube heat exchanger. The nineteen cases of configuration varying fin material, fin outer diameter and fin pitch were tested by means of the experiment and the numerical calculation. The measured heat transfer data for the circular finned-tube heat exchanger were provided. A transition of heat transfer was found in the case of low fin pitch. The thermal conductivity of fin affected on the pure heat transfer coefficient.
All-glass evacuated tube solar collectors consist of glass evacuated tubes and absorber tubes. Solar thermal energy from the sun is transferred to the working fluid through the glass evacuated tube and the absorber tube. Several collectors which have different absorber tubes are tested to find the effects of the absorber tube shapes and the operating conditions such as the incident heat flux and the flow rate. As the results, the efficiency of the collector which has a finned tube U tube is about $2{\sim}5%$ higher than that of the others in all cases on an average. And the collector has a finned U tube has the highest efficiency at the high flow rate and the low incident heat flux. In this condition, the outlet mean temperature is low and the heat loss becomes small. Also, it is known that the fin effect is greater than the shade effect.
Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.
Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.