• Title/Summary/Keyword: Low Density Range

Search Result 662, Processing Time 0.031 seconds

Synchrotron X-ray Reflectivity Studies on Nanoporous Low Dielectric Constant Organosilicate Thin Films

  • Oh, Weon-Tae;Park, Yeong-Do;Hwang, Yong-Taek;Ree, Moon-Hor
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2481-2485
    • /
    • 2007
  • Spatially resolved, quantitative, non-destructive analysis using synchrotron x-ray reflectivity (XR) with subnano-scale resolution was successfully performed on the nanoporous organosilicate thin films for low dielectric applications. The structural information of porous thin films, which were prepared with polymethylsilsesquioxane and thermally labile 4-armed, star-shaped poly(ε-caprolactone) (PCL) composites, were characterized in terms of the laterally averaged electron density profile along with a film thickness as well as a total thickness. The thermal process used in this work caused to efficiently undergo sacrificial thermal degradation, generating closed nanopores in the film. The resultant nanoporous films became homogeneous, well-defined structure with a thin skin layer and low surface roughness. The average electron density of the calcined film reduced with increase of the initial porogen loading, and finally leaded to corresponding porosity ranged from 0 to 22.8% over the porogen loading range of 0-30 wt%. In addition to XR analysis, the surface and the inner structures of films are investigated and discussed with atomic force and scanning electron microscopy images.

Competition for Water in Two Populations of Impatiens pallida (Balsaminaceae) from Contrasting Water Environments (수분환경이 다른 서식지에서 자란 Impatiens pallida 의 두 개체군간 수분에 대한 경쟁)

  • Yang, Hyo-Sik;James B. McGraw
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.165-178
    • /
    • 1996
  • We investigated the role of competition in adaptation to varying water availability levels for two ecotypically-differentiated populations of Impatiens pallida found naturally in low- vs. high-water environments. In a greenhouse experiment, seedlings were grown in pure cultures at two densities (n=1 and 2 plants per pot) and in mixed cultures (n=2) under low-, medium- and high-water treatments. The two populations were shown to be genetically distinct across the range of environmental conditions in the greenhouse experiment, confirming previous findings. The two populations had similar morphological responses to density and water availability in pure cultures and mixtures, but the population from the high-water environment showed a greater growth response to high water availability than did the population from the low-water environment and the difference in growth between the two populations decreased from the high-water to low-water treatment. Relative competitive ability of two populations were compared under three different water treatments and two densities. Differential response to watering treatment and density were not reflected in a difference in relative competitive ability. Relative yield totals were significantly greater than 1 overall. The niche differentiation suggested by RYTs>1 may be responsible for the lack of differential competitive effects observed for populations in the three vatering treatments.

  • PDF

A wide ZVS range two-transformer active-clamp forward converter with low conduction loss (낮은 도통손실을 가지며 넓은 영전압 스위칭 범위를 갖는 두 개의 변압기를 이용한 능동 클램프 포워드 컨버터)

  • Moon Sang-Cheol;Park Ki-Bum;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.369-371
    • /
    • 2006
  • Conventional active-clamp forward converter has narrow ZVS range of main switch. Although utilizing high magnetizing current can realize wide ZVS range, it increases the conduction loss. To solve this problem, a new asymmetric two-transformer active clamp forward converter is proposed. Proposed converter achieves wide ZVS range without severe conduction loss penalty, which results in high efficiency and high power density.

  • PDF

Electrochemical Characteristics of Pseudocapacitor Using Aqueous Polymeric Gel Electrolyte (수용성 폴리머 겔 전헤액을 사용한 Pseudocapacitor의 전기화학적 특성)

  • Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.158-160
    • /
    • 2003
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400 F/g (specific capacitance) and good cycleability. But, it had serious demerits of low voltage range under 0.5 V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. We report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over 250 F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100 F/g capacitance. This capacitance was only electric double layer capacitance of active surface area. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Itis very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

Study on Fluid Inclusion and Genetic Modelling of Pegmatites at the Maewol Feldspar Mine (매월장석광산(梅月長石鑛山)의 페그마타이트내(內) 유체포유물(流體包有物)과 그 성인(成因)에 관한 모델 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 1988
  • Maewol Feldspar Mine produces feldspar ore from pegmatites. K-Rb Age of muscovite is 137.7Ma. Fluid inclusions in quartz crystal of the pegmatite show bimodal distribution of homogenization temperatures. The high homogenization temperatures range from 290 to $302^{\circ}C$ while low homogenization temperatures range from 157 to $195^{\circ}C$. Three phases liquid $CO_2$ bearing inclusions indicate $CO_2$ gases were abundantly mixed with granitic melt until the pegmatic magma melt cooled to $290^{\circ}C$. Low density of the magmatic melt relative to the same volume of granitic magma is due to mixture of volatiles(mainly $CO_2$ gases) with the melt and larger space and slow cooling allowed to grow crystals of the pegmatic magma.

  • PDF

Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapaictor (수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성)

  • Kim, Han-Joo;Ishikawa, Masashi;Morita, Masayuki;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around l00F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

  • PDF

Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapacitor (수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성)

  • ;Masashi ISHIKAWA;Masayuki MORITA
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, e have studied on pretretmetn of electrode to contain working ions easily. We'll report more details.

  • PDF

Analysis of Process Parameter dependency on the characteristics of high density fluoro carbon plasma using global model (글로벌 모델에 의한 저온 고밀도 플루오로카본 플라즈마 특성의 공정변수 의존성 해석)

  • Lee, Ho-Jun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.879-881
    • /
    • 1999
  • Radical and ion densities in a CF4 plasma have been calculated as a function of input power density. 9as pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and CF+ become dominant neutral and ionic radical at the high power condition. As the pressure increases. ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of CF4 feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of CF4 monotonically decreases with flow rate. which results in increase in CF3 and decrease in CF density. The calculation results show that the SiO2 etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

The Phase Separation of Low Alkali Borosilicate Glass by Substituting $Li_2O$ for $Na_2O$ (산화리튬의 치환에 따른 붕규산 유리의 분상에 관한 연구)

  • 양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 1981
  • The phase separation of low-alkali borosilicate glass with the composition of $6.25Na_2O$.$18.75B_2O_3$.$75.00SiO_2$(mole%) substituting $Li_2O$ for $Na_2O$ was studied. The phase separation in the temperature range of transformation was examined with various heating temperatures and soaking times. Durability to water, thermal expansion and specific density of the specimen were investigated and the microstructure of the separated phase was also observed by transmission electron micrograph techniques. The maximum alkali extraction result with the best phase separation effect was obtained when $Na_2O$ of the base glass was replaced with $1.88Li_2O$ (mole %) and electron micrograph of carbon film replica of $1.88Li_2O$$4.37Na_2O$.$18.75B_2O_3$.$75.00SiO_2$ (mole %) glass showed that the glass consisted of homogeneous two phases. The minimum specific density was shown with the specimen treated at 57$0^{\circ}C$ and it was also shown that the longer the treating time the lower the specific density. The apparent activation energies of approximately 45 kcal/mole by the alkali extraction and 43kcal/mole by the thermal expansion method were derived from the Arrhenius plots, respectively.

  • PDF

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.