• 제목/요약/키워드: Low Cycle Fatigue Data

검색결과 56건 처리시간 0.024초

주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델 (Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models)

  • 고승기
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 및 고주기 피로 수명 예측 모델 (A Prediction Model for Low Cycle and High Cycle Fatigue Lives of Pre-strained Fe-18Mn TWIP Steel)

  • 김용우;이종수
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2010
  • The influence of pre-strain on low cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the total strain amplitudes in the range of ${\pm}0.4\;{\sim}\;{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negligible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been suggested by adding ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter. Also, high-cycle fatigue lives predicted using the low-cycle fatigue data well agreed with the experimental ones.

Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900℃ by Coffin-Manson and Strain Energy Density-Based Models

  • Rando, Tungga Dewa;Kim, Seon-Jin
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.43-49
    • /
    • 2017
  • This work aims to investigate on the low cycle fatigue life assessment, which is adopted on the strain-life relationship, or better known as the Coffin-Manson relationship, and also the strain energy density-based model. The low cycle fatigue test results of Alloy 617 weldments under $900^{\circ}C$ have been statistically estimated through the Coffin-Manson relationship according to the provided strain profile. In addition, the strain energy density-based model is proposed to represent the energy dissipated per cycle as fatigue damage parameter. Based on the results, Alloy 617 weldments followed the Coffin-Manson relationship and strain energy density-based model well, and they were compatible with the experimental data. The predicted lives based on these two proposed models were examined with the experimental data to select a proper life prediction parameter.

고강도 저합금강의 저주기 피로특성 (Low Cycle Fatigue Characteristics of High Strength Low Alloy Steel)

  • 김재훈;김덕회;이종현;조성석;전병환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.169-174
    • /
    • 2001
  • Low cycle fatigue tests are performed on high strength low alloy steels that be developed for submarine material. The relation between absorbed plastic strain energy and numbers of cycle to failure is examined in order to predict the low cycle fatigue life of structural steels by using plastic strain energy method. The cyclic properties are determined by a least square fit techniques. The life predicted by the plastic strain energy method is found to coincide with experiment data and results obtained from the Coffin-Manson method. Also the cyclic behavior of structural steels is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of structural steels are investigated according to changing tempering temperatures. In the case of PFS steels, the $\varepsilon$-Cu is formed in 550C of tempering temperature and enhances the low cycle fatigue properties.

  • PDF

코발트기 초내열합금 ECY768의 고온 저주기피로 거동 (Low Cycle Fatigue Behavior of Cobalt-Base Superalloy ECY768 at Elevated Temperature)

  • 양호영;김재훈;하재석;유근봉;이기천
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.18-22
    • /
    • 2013
  • The Co-base super heat resisting alloy ECY768 is employed in gas turbine because of its high temperature strength and oxidation resistance. The prediction of fatigue life for superalloy is important for improving the efficiency. In this paper, low cycle fatigue tests are performed as variables of total strain range and temperature. The relations between strain energy density and number of cycle to failure are examined in order to predict the low cycle fatigue life of ECY768 super alloy. The lives predicted by strain energy methods are found to coincide with experimental data and results obtained from the Coffin-Manson method. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측 (Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density)

  • 김재훈;김덕희
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

변형률 에너지법을 이용한 Inconel 617의 저주기피로 수명 예측 (Prediction of Low Cycle Fatigue Life for Inconel 617 using Strain Energy Method)

  • 김덕회;김기광;김재훈;이영신;박원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.285-290
    • /
    • 2004
  • Low cycle fatigue tests are performed on the Inconel 617 that be used for a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

Inconel 617의 저주기피로 수명 예측 (Prediction of low cycle fatigue life for Inconel 617)

  • 김기광;김덕회;김재훈;이영신;박원식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2005
  • Low cycle fatigue tests are performed on the Incollel 617 that be used fur a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Mansun method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

LNG 선박용 벨로우즈의 제작시 성형방법에 따른 성능 평가 II - 저주기 피로 특성 비교 - (Performance evaluation according to the forming method during production of bellows for LNG carriers II - Comparison of low cycle fatigue characteristics -)

  • 김평수;김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.593-598
    • /
    • 2016
  • LNG 선박용 성형 벨로우즈의 성형방법에 따른 특성을 파악하기 위하여 정적시험과 저주기 피로시험을 실시하였다. 벨로우즈의 규정된 수명 사이클인 8,000회를 실시하여 시험전후의 벨로우즈의 각 산에 걸리는 변형률과 응력을 측정하여 성형방법에 따른 벨로우즈간의 차이를 분석하고 산 별 응력분포를 살펴보았다. 본 저주기 피로시험은 x-y방향의 변위가 가능한 유압시스템의 구조시험장비에 성형 벨로우즈를 장착하고 벨로우즈의 각 산에는 스트레인게이지를 장착하고 멀티레코더를 통하여 데이터를 처리하였다. 이를 통하여 벨로우즈가 성형방법에 따른 수명의 차이가 있는지 살펴보았고, 성형방법에 따른 수명의 차이를 주는 원인을 분석하였다.

니켈기 초내열합금 IN738LC의 고온 저주기피로 거동 (Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature)

  • 황권태;김재훈;유근봉;이한상;유영수
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1403-1409
    • /
    • 2010
  • 니켈기 초내열합금은 고온 강도를 지속적으로 증가시키며 현재 비행기 엔진, 선박 엔진 및 발전용 가스터빈 고온 부품 등을 만드는 가장 중요한 소재로 오래전부터 사용되어져 왔다. 이러한 부품의 수명을 연장하기 위해서는 사용 환경과 유사한 조건에서의 피로수명 예측이 매우 중요하다. 따라서 본 연구에서는 가스터빈 블레이드 소재인 니켈기 초내열합금 IN738LC에 대하여 실제운전환경과 유사한 조건을 설정하여 다양한 변형률 범위와 온도에서 시험을 수행하였다. 저주기 피로수명을 예측하기 위하여 변형률 에너지 밀도와 파단 사이클과의 관계를 사용하였다. 수명의 예측은 시험결과를 토대로 변형률 에너지법과 Coffin-Manson법에 의하여 예측을 하였다.