• Title/Summary/Keyword: Low Computational Complexity

Search Result 492, Processing Time 0.021 seconds

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Accelerating Medical Image Processing on Integrated GPU Using OpenCL (OpenCL을 이용한 내장형 GPU에서의 의학영상처리 가속화)

  • Kim, Beom-Jun;Shin, Byeong-seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • A variety of filters are applied to improve the quality of noise and low resolution medical images. This is necessary to reduce the radiation dose of the patient and to improve the utilization of the conventional spherical imaging equipment. In the conventional method, it is common to perform filtering using the CPU of the PC. However, it is difficult to produce results in real time by applying various calculations and filters to high-resolution human images using only the CPU performance of a PC used in a hospital. In this paper, we analyze the structure and performance of Intel integrated GPU in CPU and propose a method to perform image filtering using OpenCL parallel processing function. By applying complex filters with high computational complexity to medical images, high quality images can be generated in real time.

Design of MUSIC-based DoA Estimator for Bluetooth Applications (Bluetooth 응용을 위한 MUSIC 알고리즘 기반 DoA 추정기의 설계)

  • Kim, Jongmin;Oh, Dongjae;Park, Sanghoon;Lee, Seunghyeok;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.339-346
    • /
    • 2020
  • In this paper, we propose an angle estimator that is designed to be applied to Bluetooth low-power application technology based on multiple signal classification (MUSIC) algorithm, and present the result of implementation in FPGA. The MUSIC algorithm is designed for H/W high-speed design because it requires a lot of calculations due to high accuracy, and the snapshot variable is designed to cope with various resolution requirements of indoor systems. As a result of the implementation with Xilinx zynq-7000, it was confirmed that 9,081 LUTs were implemented, and it was designed to operate at =the operating frequency of 100MHz.

Non-redundant Precoding Based Blind Channel Estimation Scheme for OFDM Systems (OFDM 시스템에서 비중복 프리코딩을 이용한 미상 채널 추정 방법)

  • Seo, Bang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.450-457
    • /
    • 2012
  • For orthogonal frequency-division multiplexing (OFDM) systems, we propose a blind channel estimation scheme based on non-redundant precoding. In the proposed scheme, a modified covariance matrix is first obtained by dividing the covariance matrix of the received signal vector by the precoding matrix element-by-element. Then, the channel vector is estimated as an eigenvector corresponding to the largest eigenvalue of the modified covariance matrix. The eigenvector can be obtained by power method with low computational complexity instead of the complicated eigenvalue decomposition. We analytically derive a mean square error (MSE) of the proposed channel estimation scheme and show that the analysis result coincides well with the simulation result. Also, simulation results show that the proposed scheme has better MSE and bit error rate (BER) performance than conventional channel estimation schemes.

A Study on Human Body Tracking Method for Application of Smartphones (스마트폰 적용을 위한 휴먼 바디 추적 방법에 대한 연구)

  • Kim, Beom-yeong;Choi, Yu-jin;Jang, Seong-wook;Kim, Yoon-sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.465-469
    • /
    • 2017
  • In this paper we propose a human body tracking method for application of smartphones. The conventional human body tracking method is divided into a sensor-based method and a vision-based method. The sensor-based methods have a weakness in that tracking accuracy is low due to cumulative error of position information. The vision-based method has no cumulative error, but it requires reduction of the computational complexity for application of smartphone. In this paper we use the improved HOG algorithm as a human body tracking method for application of smartphone. The improved HOG algorithm is implemented through downsampling and frame sampling. Gaussian pyramid is applied for downsampling, and uniform sampling is applied for frame sampling. We measured the proposed algorithm on two devices, four resolutions, and four frame sampling intervals. We derive the best detection rate among downsampling and frame sampling parameters that can be applied in realtime.

  • PDF

CA Joint Resource Allocation Algorithm Based on QoE Weight

  • LIU, Jun-Xia;JIA, Zhen-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2233-2252
    • /
    • 2018
  • For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution (LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain the optimal resource allocation scheme. This paper proposes a joint resource allocation algorithm based on the weights of user's average quality of experience (JRA-WQOE). In contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation abilities of different users and consider user fairness. An optimization model is established by considering the user quality of experience (QoE) with the aim of maximizing the total user rate. In this model, user QoE is quantified by the mean opinion score (MOS) model, where the average MOS value of users is defined as the weight factor of the optimization model. The JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for users with different carrier aggregation capacities, and the latter, which is based on the Lagrangian dual method, is used to optimize the power allocation process. Simulation results showed that the proposed JRA-WQOE algorithm has low computational complexity and fast convergence. Compared with existing algorithms, it affords obvious advantages such as improving the average throughput and fairness to users. With varying numbers of users and signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values than prevalent algorithms.

Fast Variable-size Block Matching Algorithm for Motion Estimation Based on Bit-patterns (비트패턴 기반 움직임 추정을 위한 고속의 가변 블록 정합 알고리즘)

  • Kwon, Heak-Bong;Song, Young-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2003
  • In this paper, we propose a fast variable block matching algorithm for motion estimation based on bit-patterns. Motion estimation in the proposed algorithm is peformed after the representation of image sequence is transformed 8-bit pixel values into 1-bit ones by the mean pixel value of search block, which brings a short searching time by reducing the computational complexity. Moreover, adaptive searching methods according to the motion information of the block make the procedure of motion estimation efficient by eliminating unnecessary searching processes of low motion block and deepening a searching procedure in high motion block. Experimental results show that the proposed algorithm provides bettor performance - average 0.5dB PSNR improvement and about 99% savings in the number of operations - than full search Hock matching algorithm with a fixed block size.

  • PDF

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

A Study on Lightweight Model with Attention Process for Efficient Object Detection (효율적인 객체 검출을 위해 Attention Process를 적용한 경량화 모델에 대한 연구)

  • Park, Chan-Soo;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.307-313
    • /
    • 2021
  • In this paper, a lightweight network with fewer parameters compared to the existing object detection method is proposed. In the case of the currently used detection model, the network complexity has been greatly increased to improve accuracy. Therefore, the proposed network uses EfficientNet as a feature extraction network, and the subsequent layers are formed in a pyramid structure to utilize low-level detailed features and high-level semantic features. An attention process was applied between pyramid structures to suppress unnecessary noise for prediction. All computational processes of the network are replaced by depth-wise and point-wise convolutions to minimize the amount of computation. The proposed network was trained and evaluated using the PASCAL VOC dataset. The features fused through the experiment showed robust properties for various objects through a refinement process. Compared with the CNN-based detection model, detection accuracy is improved with a small amount of computation. It is considered necessary to adjust the anchor ratio according to the size of the object as a future study.

Selective Encryption and Decryption Method for IVC Codec (IVC 코덱을 위한 선택적 암호화 및 복호화 방법)

  • Lee, Min Ku;Kim, Kyu-Tae;Jang, Euee S.
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.1013-1016
    • /
    • 2020
  • This paper presents a selective encryption and decryption method exploiting the start code of the IVC bitstream. The existing encryption methods for video are largely classified into two methods: Naive Encryption Algorithm (NEA) and Selective Encryption Algorithm (SEA). Since NEA encrypts the entire bitstream, it has the advantage of high security but has the disadvantage of high computational complexity. SEA improves the encryption and decryption speed compared to NEA by encrypting a part of the bitstream, but there is a problem that security is relatively low. The proposed method improves the encryption and decryption speed and the security of the existing SEA by using the start code of the IVC bitstream. As a result of the experiment, the proposed method reduces the encryption speed by 96% and the decryption speed by 98% on average compared to the NEA.