• 제목/요약/키워드: Low Characteristic Impedance

검색결과 92건 처리시간 0.038초

Characteristic Impedances in Low-Voltage Distribution Systems for Power Line Communication

  • Kim, Young-Sung;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.29-34
    • /
    • 2007
  • The input and output impedances in a low voltage distribution system is one of the most important matters for power line communication because from the viewpoint of communication, the attenuation characteristic of the high frequency signals is greatly caused by impedance mismatch during sending and receiving. The frequency range is from 1MHz to 30MHz. Therefore, this paper investigates the input and output impedances in order to understand the characteristic of high frequency signals in the low voltage distribution system between a pole transformer and an end user. For power line communication, the model of Korea's low voltage distribution system is proposed in a residential area and then the low voltage distribution system is set up in a laboratory. In the low voltage distribution system, S parameters are measured by using a network analyzer. Finally, input and output impedances are calculated using S parameters.

an Analysis of the Variation on the Impedance Characteristic according to Effective Area of Globe Control Valve at Low Frequency Perturbation (저주파 압력섭동에서 글로브 제어밸브의 유효 단면적에 따른 임피던스 특성 변화 해석)

  • Park, Seungsoo;Yoon, Woongsup;ohm, Wonsuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.718-723
    • /
    • 2017
  • In this paper, Analytical study is carried out on the impedance characteristics of the globe control valve, which is mainly used for thrust control in liquid rockets, according to the effective area at low frequency perturbation. The impedance tends to increase according to effective area and the cause of impedance characteristic change through flow field visualization is investigated. In the future, the information on the change in the impedance characteristics of the control valve can be used to obtain the impedance of the supply system and it can be utilized to predict pogo phenomenon as well as design accumulator and orifice to reduce the pogo phenomenon.

  • PDF

Study on Characteristic Impedance in LV Distribution System for PLC (전력선 통신을 위한 저압 배전 시스템의 임피던스 연구)

  • Kim, Young-Sung;Kim, Jea-Chul;Lee, Yang-Jin;Cho, Sung-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.78-81
    • /
    • 2006
  • In this paper, the investigation of characteristic impedance on low voltage distribution system is described The residential area of LV distribution systems is researched for the modeling. At frequency range from 1MHz to 30Mhz, the input characteristic impedances of low-voltage distribution network are obtained with experiments. The low-voltage distribution system based on the model is built at the laboratory building. S parameters are measured by performing experiments. Finally, the characteristic impedances are reported.

  • PDF

Analysis for the conventional impedance of counterpoise using EMTP (EMTP를 이용한 매설지선의 규약접지임피던스 해석)

  • Kim, Jong-Ho;Joe, Jeong-Hyeon;Beak, Young-Hwan;Lee, Gang-Su;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2009
  • When the lightning currents flow through the ground electrode, the grounding system should be evaluated by the grounding impedance rather than the ground resistance because a grounding system shows the transient impedance characteristic by the inductance of the ground electrode and the capacitance of the soil. The ratio of the peak values of electric potential and currents is the conventional impedance that shows the transient characteristic about impulse currents of the grounding system in a roundabout way. The grounding system having low conventional impedance is a fine grounding system with low electric potential when the lightning currents flow. In this paper the conventional impedance of the counterpoise is calculated by using the distributed parameter circuit model and embodied the distributed parameter circuit model by using the EMTP program The adequacy of the distributed parameter model is examined by comparing the simulated and the measured results. The conventional impedance of the counterpoise is analyzed for first short stroke and subsequent short stroke currents.

  • PDF

Wideband Power Divider Using a Coaxial Cable (동축선을 이용한 광대역 전력 분배기)

  • Park, Ung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제16권4호
    • /
    • pp.661-668
    • /
    • 2012
  • A coaxial-cable impedance transformer that can be used in high power and wideband frequency range is an arbitrary impedance transformation ratio by an additional coaxial cable. The coaxial-cable impedance transformer to be 50-${\Omega}$ to 25-${\Omega}$ impedance transformation ratio is easily operated an wideband power divider by connecting two 50-${\Omega}$ lines at 25-${\Omega}$ impedance point. This wideband power divider has a poor output matching characteristic and a poor isolation characteristic between two output ports. In this paper, it proposes a coaxial-cable power divider to be a good output matching and isolation characteristics as it uses the singly terminated filter design theory. The odd-mode operation characteristic of the suggested power divider to use singly terminated low pass filter coefficient due to matching order and ripple value is examined by ADS program. And, it fabricates and measures the operation characteristic of 2-way power divider with 2nd-order and 4th-order matching circuit.

A Study on the Transient Ground Impedance Modeling for Rod-type Grounding Electrodes by Frequency and Time Domain Characteristic Tests (주파수 및 시간영역 특성시험에 의한 봉형 접지전극의 과도 접지임피던스 모델링에 관한 연구)

  • Kim, Jong-Uk;Kim, Kyung-Chul;Shin, Pan-Seok;Choi, Jong-Ki;Choi, Sun-Kyu;Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제24권2호
    • /
    • pp.133-141
    • /
    • 2010
  • Grounding system insures a reference potential point for electric devices and also provides a low impedance path for fault currents in the earth. The ground impedance as function of frequency is necessary for determining its performance since fault currents could contain a wide range of frequencies. Copper and concrete rod electrodes are the most commonly used grounding electrode in electric distribution systems. In this paper, the ground impedance of copper and concrete rods has been measured by frequency and time domain characteristic tests. An equivalent transfer function model of the ground impedance is identified from the measured values by using ARMA method and evaluated by comparing conventional grounding impedances.

An Experimental Analysis of the Ripple Current Applied Variable Frequency Characteristic in a Polymer Electrolyte Membrane Fuel Cell

  • Kim, Jong-Hoon;Jang, Min-Ho;Choe, Jun-Seok;Kim, Do-Young;Tak, Yong-Sug;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.82-89
    • /
    • 2011
  • Differences in the frequency characteristic applied to a ripple current may shorten fuel cell life span and worsen the fuel efficiency. Therefore, this paper presents an experimental analysis of the ripple current applied variable frequency characteristic in a polymer electrolyte membrane fuel cell (PEMFC). This paper provides the first attempt to examine the impact of ripple current through immediate measurements on a single cell test. After cycling for hours at three frequencies, each polarization and impedance curve is obtained and compared with those of a fuel cell. Through experimental results, it can be absolutely concluded that low frequency ripple current leads to long-term degradation of a fuel cell. Three different PEMFC failures such as membrane dehydration, flooding and carbon monoxide (CO) poisoning that lead to an increase in the impedance magnitude at low frequencies are simply introduced.

100Gbps Ti: LiNbO$_3$ Optical Intensity Modulator (100Gbps Ti:LiNbO$_3$ 광강도 변조기)

  • 김성구;이한영;윤형도;임상규;구경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.282-285
    • /
    • 1999
  • Fabrication and pakaging method for low delve voltage and 10Gbps Ti diffused waveguide LiNbO$_3$ optical intensity modulator are described. Optical waveguides were prepared by conventionaly electron-beam evaporation and Ti-indiffusion into Z-cut plate LiNbO$_3$. Traveling-wave electrodes were used for obtaining the wideband frequency response and impedance matching. Microwave effective index and characteristic impedance measured by time domain reflectometry and compared with the calculated value by conformal mapping. The characteristics of 10Gbps modulator at the 1550nm wavelength are as follows : perfect modulation voltage Is about 5V, optical insertion loss Is about 5dB, 3-dB bandwidth is 10GHz, and characteristic impedance is about 50$\Omega$.

  • PDF

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • 제46권3호
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

Unequal Power Divider using Parallel Connection Transmission Line (병렬 연결된 전송선로를 이용한 비대칭 전력 분배기)

  • Kwon, Sang-Keun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • 제17권2호
    • /
    • pp.202-207
    • /
    • 2013
  • In this paper, a high dividing ratio unequal power divider using parallel connection transmission line is presented. Because a very low impedance transmission line can't implement a microstrip technology, this can fabricate a parallel connection transmission line with high impedance. When we design a high dividing ratio divider, we need the very low impedance line. The parallel connection transmission line could be implemented to obtain a low impedance line characteristic. To validity this approach, we are implemented a 10:1 unequal divider at center frequency 1 GHz. The performances of power divider agree with simulation results.