• Title/Summary/Keyword: Louver fins

Search Result 28, Processing Time 0.019 seconds

A Study of Dust Effect on Performance of Heat Exchangers with Louver and Wavy Fins (루버형과 파형핀 열교환기에서 분진이 성능에 미치는 영향에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2009
  • Automotive heat exchangers use louver fins for their high efficiency. However, the efficiency can significantly drop for constructional vehicles or heavy equipments due to dust deposited on the louver fins with narrow slits. Thus it is necessary to develop new fins that lead to less fouling, so that a better performance can be achieved after exposure to a dusty environment over long period of time. New wavy fins were considered in the study and numerically analysed to compare with louver fins in the areas of air-side pressure drop, heat release rate, and particulate deposition. In addition, an experiment was done on the pressure drop and the particulate deposition. The results showed that the wavy fins would be a better choice for long-term use due to the excellent dust-proof performance in comparison to louver fins, in spite of the initial inferior performance of heat release.

Experimental Study of Heat Transfer Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 열전달특성에 관한 실험적 연구)

  • 전창덕;홍주태;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.120-139
    • /
    • 1996
  • Experiment was performed to study the heat transfer characteristics in 27 kinds of 15 : 1 scale models of multi-louverred fin heat exchangers with a wide range of variables(R $e_{Lp}$ =100~1, 800, $L_p$/F$p$=0.3~0.9, $\theta$=20$^{\circ}$~40$^{\circ}$). Thermofoil heaters were used to heat the louver fins and the local average Nusselt number for each louver in the louver array was obtained at constant wall temperature conditions. Correlations are developed to predict the heat transfer characteristics and drag coefficients. Generally, the heat transfer characteristics in the multi-louvered fins is shown to be similar to those of the laminar heat transfer on a flat plate. As the Reynolds number, the louver pitch to fin pitch ratio$L_p$/F$p$and the louver angle($\theta$) increase respectively, the average Nusselt number increases, but the variation of average Nusselt number as a function of the louver angle is smaller than that as a function of the louver pitch to fin pitch ratio. In case of$L_p$/F$p$ <0.5, the average Nusselt number of the 3rd louver is especially lower than the others, it is expected that it is due to the flow structure such as a recirculation flow and a flow separation.

  • PDF

Cooling Performance of Thermoelectric Module with Air-Cooled Heat Exchanger Fins (공랭식 열교환핀이 부착된 열전모듈의 냉각 성능에 관한 연구)

  • Shin, Jae-Hoon;Han, Hun-Sik;Kim, Yun-Ho;Kim, Seo-Young;Hyun, Jae-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • Thermal performance of louver fin and plate fin in a thermoelectric cooling system with a duct-flow type fan arrangement is analytically evaluated. The thermoelectric cooling system consists of a thermoelectric module and two heat exchanger fins. The analytic results show that the optimized louver fin has lower thermal resistance than plate fin. The COP and heat absorbed rate of the thermoelectric cooling system with optimized louver fins are 10.3% and 5.8% higher than optimized plate fins, respectively.

An Experimental Study on Air-Side Performance of Fin-and-Tube Heat Exchangers Having Compound Enhanced Fins (복합 전열 촉진 핀이 적용된 핀-관 열교환기의 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4364-4374
    • /
    • 2015
  • In this study, heat transfer and friction characteristics of compound enhanced fin-and-tube heat exchangers were experimentally investigated. Louver-finned heat exchangers were also tested for comparison purpose. The effect of fin pitch on j and f factor was negligible. The j factor decreased as number of tube row increased. However, f factor was independent of number of tube row. Louver fin samples yielded higher j and f factors than compound enhanced fin samples. For one row, j and f factors of louver fin were 23% and 27% higher than those of compound enhanced fin. For two row, those were 11% and 8%, and for three row, those were 10% and 9%. However, heat transfer capacities at the same pressure drop of the compound enhanced fins were 6.4% for one row, 11.1% for two row and 13.6% for three row larger than those of louver fins, Existing louver fin correlation overpredicted the present j factors and underpredicted the present f factors.

Air-side Performance of Louver-Finned Flat Aluminum Heat Exchangers at a Low Velocity Region (저속 영역에서 루버휜이 장착된 평판관형 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구)

  • Cho, Jin-Pyo;Oh, Wang-Kyu;Kim, Nae-Hyun;Youn, Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1681-1691
    • /
    • 2002
  • The heat transfer and pressure drop characteristics of heat exchangers with louver fins were experimentally investigated. The samples had small fin pitches (1.0 mm to 1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). At a certain Reynolds number (critical Reynolds number), the flattening of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L$_{p}$F$_{p}$) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. It is suggested that, for proper assessment of the heat transfer behavior, the louver pattern in addition to the flow characterization need to be considered. The heat transfer coefficient increased as the fin pitch decreased. At low Reynolds numbers, however, the trend was reversed. Possible explanation is provided considering the louver pattern between neighboring fins. Different from the heat transfer coefficient, the friction factor did not show the flattening characteristic. The reason may be attributed to the form drag by louvers, which offsets the decreased skin friction at a low Reynolds number. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 90% of the friction factor within $\pm$10%.10%.

Airside Performance of Convex Louver Fin-and-Tube Heat Exchangers

  • Kim, Nae-Hyun;Oh, Wang-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.100-107
    • /
    • 2008
  • The heat transfer and friction characteristics of heat exchangers having convex louver fins are experimentally investigated, and the results are compared with those of wave fin counterparts. Eighteen samples (nine convex louver fin samples and nine wave fin samples) which had different fm pitches (1.81 mm to 2.54 mm) and tube rows (one to four) were tested. The convex angle was $11.7^{\circ}$. The j factors are insensitive to fin pitch, while f factors increase as fin pitch increases. The effect of fin pitch on f factor is more significant for the wave fin compared with the convex louver fin. It appears that the complex fin pattern of the convex louver fin induces intense mixing of the flow, and thus reduces the effect of fin pitch. Both the j and f factors decrease as the number of tube row increases. However, as the Reynolds number increases, the effect of tube row diminishes. Comparison of the convex louver fin j factors with those of wave fin reveals that convex louver fin j factors are 18% to 29% higher than those of wave fin. The f factors are 16% to 34% higher for the convex louver fin. The difference increases as fin pitch decreases. Existing correlation fails to adequately predict the present data. More data is needed for a general correlation of the convex louver fin geometry.

Three Dimensional Analysis for the Performance of the Corrugated Louver Fin for a Vehicle Heat Exchanger (차량용 열교환기의 주름진 루터 휜에 대한 3차원 성능해석)

  • 박봉수;조재헌;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.116-126
    • /
    • 2002
  • A three dimensional numerical analysis of the corrugated louver fin for a vehicle heat exchanger was performed. The heat transfer rate and the air pressure drop of the corrugated louver fins for a slim heater were compared with experimental results at the same operating conditions. As for the slim heater fin, we found an optimum fin pitch at certain operating conditions. As the fin pitch increased, the air pressure drop decreased. The vertical or flat top fin was superior to the common declined fin in the aspect of heat transfer performance. As the louver length increased, both the heat transfer rate and the air pressure drop increased.

Flow Efficiency in Multi-Louvered Fins Having Large Louver-to-Fin Pitch Ratio

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Kim, Do-Young;Kim, Hyun-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.156-162
    • /
    • 2007
  • Flow visualization experiments were conducted for two louver arrays having large louver pitch ratio ($L_p/F_p=1.0$ and 1.4). Flow efficiencies and critical Reynolds numbers were obtained from the data, and were compared with existing correlations. The correlations failed to predict the present flow efficiency data adequately; some correlation overpredicted the data, while others underpredicted the data. Large louver pitch ratio of the present model, which is outside of the applicable range of the correlations may partly be responsible. The critical Reynolds numbers obtained from the present flow visualization data were in close agreement with those obtained from the heat transfer tests on actual flat tube heat exchangers. Existing correlations on the critical Reynolds number generally overpredicted the present data.

Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator (와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진)

  • 박병규;정재동;이준식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

Experimental study of performance characteristics of various fin types for fin-tube heat exchanger (휜-관 열교환기에 있어서 각종 휜 형상의 성능 특성에 관한 실험적 연구)

  • Yoon, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.484-491
    • /
    • 1999
  • Air side heat transfer and pressure drop for ø9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power.

  • PDF