• 제목/요약/키워드: Loudspeaker Model

검색결과 25건 처리시간 0.021초

밀폐박스 상태의 가상 라우드스피커 매개변수 규명법 및 개선된 밀폐박스 모델링 (Parameters Estimation for Pseudo Loudspeaker attached to Closed-Box and Enhanced Closed-Box Modeling)

  • 박석태
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.983-992
    • /
    • 2007
  • It was proposed to identify Thiele Small Parameters for loudspeaker attached to closed-box using known dynamic mass of moving parts. Also, enhanced PSPICE circuit model for closed-box loudspeaker system was proposed to more accurately simulate real closed-box loudspeaker system. Frequency dependent parameters were used to model voice coil inductor. Acoustic pressure response curves and electrical impedance curves were simulated and investigated by PSPICE circuit model according to compensation filter's parameters. Finally, proposed method is expected to be utilized for identification of pseudo Thiele Small parameters of microspeaker.

10 mm급 원형 마이크로스피커의 가상 스피커 TS 매개변수 규명 (Thiele Small Parameters Estimation for Pseudo Loudspeaker within 10 mm Grade Circular-type Microspeaker)

  • 박석태
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1112-1118
    • /
    • 2007
  • It was discussed to identify Thiele Small Parameters for Pseudo loudspeaker within 10mm grade microspeaker attached to closed-box using known dynamic mass of moving parts. Also, enhanced circuit model for vented-box micro speaker system was used to more accurately simulate electrical impedance curves for real vented-box microspeaker system and compared to test results. Consequently, it showed that micro speaker could be modeled by pseudo loudspeaker TS parameters similar to general loudspeaker. Vented-box microspeaker model with pseudo loudspeaker TS parameters was well suited to describe real microspeaker. Also, it was proposed to estimate volume of rear closed-box of microspeaker without design specifications.

직접 방사형 스피커의 비선형 고조파 왜곡 보상 제어기의 설계 (Controller design for compensation of nonlinear harmonic distortion in direct-radiator loudspeakers)

  • 김윤선;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.399-402
    • /
    • 1996
  • The electrodynamic loudspeakers should have a wide dynamic range to reproduce various sound levels. When the input signal is small, the radiated sound from the loudspeaker is not so much distorted. However, for large input signal with low frequency component the radiated sound is significantly distorted due to the nonlinearities of the loudspeaker. The suspension, damping, and magnetic flux of loudspeaker are the main sources of the nonlinearity. Such electromechanical parameters related to harmonic distortion have been represented by a polynomial model for diaphragm displacement, while each of the polynomial coefficient is evaluated by using the principle of harmonic balance experimentally. Based on the polynomial model, we designed a compensator for nonlinear harmonic distortion of direct radiator loudspeaker. Than observer is used to estimate the displacement of the loudspeaker diaphragm, which is rather difficult to measure directly in the conventional setting. The usefulness of the designed compensator is demonstrated by numerical simulations. Simulation results show about 30db decrease at the second and third higher harmonic distortions. We carry out an experiment on speaker to verify designed controller and nonlinear observer.

  • PDF

PSPICE를 이용한 개선된 벤트박스 스피커 시스템 모델링 (Enhanced PSPICE Circuit Model for Vented-Box Loudspeaker System)

  • 박석태
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.757-765
    • /
    • 2007
  • Enhanced PSPICE circuit model for vented-box loudspeaker system with lumped parameters was proposed to more accurately simulate real vented-box loudspeaker system. Frequency dependent parameters were used to model voice coil inductor. Acoustic pressure response curves and electrical impedance curves were simulated and investigated by PSPICE circuit model according to circuit parameters' variations. Finally, it was used to identify faults detection in woofers manufactured by unskilled persons.

스피커의 특성을 고려한 음향 전력 증폭기 구동 방식의 비교: 전압 구동 방식과 전류 구동 방식 (Comparison of the Driving Modes of an Audio Power Amplifier Considering the Characteristics of the Loudspeaker: Voltage Drive vs. Current Drive)

  • 은창수;이유칠
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1551-1558
    • /
    • 2017
  • Audio power amplifiers have been designed based on the premise that the impedance of loudspeakers is fixed at nominal 4 ohms or 8 ohms. However, it is known that the impedance varies with frequency and takes on the nominal value at some limited frequencies. The principle of the loudspeaker operation reveals that the sound pressure produced by the loudspeaker is proportional to the current flowing in the voice coil, not the voltage between the two terminals. We take the characteristics of the loudspeaker into account and compare the frequency responses of the loudspeaker in voltage-drive mode and current-drive mode via computer simulations, to conclude that the audio amplifier drive mode should be re-considered in an effort to improve the sound quality.

직접방사형 스피커의 음향특성 해석및 설계 (Acoustic Analysis and Design of a Direct-Radiator-Type Loudspeaker)

  • 김준태;김정호;김진오
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.274-282
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on the numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculated the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. Some design parameters have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

자동차 오디오용 서브우퍼 개발 (Development of Subwoofer for Car Audio System)

  • 박석태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper, computational analysis and experiments of subwoofer for car audio speaker system were performed and discussed to analyze acoustical phenomena for subwoofer. Ported enclosure system with subwoofer were manufactured and provided for test and simulation purposes. Subwoofer with single voice coil and double voice coil were identified by linear and nonlinear parameter identification method for loudspeaker parameters. For high power inputs to subwoofer, sound pressure levels were compared according to input powers with linear and nonlinear loudspeaker models. For subwoofer system with high power nonlinear speaker model was showed to be adequate to describe the behaviour of loudspeaker.

  • PDF

Horn의 음향 모델링 연구 - 음향 혼의 해석 및 설계 - (A Study on the Acoustic Modeling of Horn - Analysis and Design of Acoustic Horn -)

  • 사종성;박석태
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.537-548
    • /
    • 2014
  • In this paper, horn loudspeaker modeling was suggested, investigated and verified through comparison of test results and simulation ones based on input electrical impedance curves and acoustic sensitivity ones. First, Thiele Small parameters of horn driver were identified by using pseudo loudspeaker model concept and verified in case of both closed and open horndriver. Second, cone-shaped horn models were investigated and compared with input acoustic impedance curves for real horn(cone angle $6.6^{\circ}$) and short horn(cone angle $27.9^{\circ}$). It showed that Leach model for cone horn was well described to test results, which were electrical impedance and acoustic sensitivity, compared to Lemaitre one. To represent horn system model good approximation in wide frequency range, mass correction filter and lowpass filter were adopted and consequently showed good fitted to test results.

음향해석과 다구치법에 의한 스피커 설계 (Designing a Loudspeaker by Acoutsic Analysis and Taguchi Method)

  • 김준태;김정호;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.568-574
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on a numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculate the vibration response of the cone excited by the voice coil. The vibration response of the speaker cone has been used as a boundary condition for the acoustic analysis, and the acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical model has been confirmed by comparing the numerical results with experimental ones obtained in an anechoic chamber. Some design parameters contributing dominantly to the acoustic characteristics have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

진동/음향 해석에 의한 스피커의 음향특성 연구 (Acoustic characteristics of a loudspeaker obtained by vibration and acoustic analysis)

  • 김정호;김준태;김진오;민진기
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1742-1756
    • /
    • 1997
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The natural modes of the speaker cone vibration analyzed numerically by the finite element method have been verified by comparing them with experimental results. The so-ap-proved finite-element model has been used to calculate the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone paper has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics, directivity, and sound pressure distribution of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameter values can be examined using the numerical model.