• Title/Summary/Keyword: Loss-based Congestion Control

Search Result 102, Processing Time 0.024 seconds

A Switch Behavior Supporting Effective ABR Traffic Control for Remote Destinations in a Multiple Connection (다중점 연결의 원거리 수신원에 대한 효율적이 ABR 트래픽 제어를 제공하는 스위치 동작 방식)

  • Lee, Sook-Young;Lee, Mee-Jeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1610-1619
    • /
    • 1998
  • The ABR service class provides feedback based traffic control to transport bursty data traffic efficiently. Feedback based congestion control has first been studied to be applied to unicast connections. Recently. several congestion control algorithms for multicast connections have also been proposed as the number of ABR applications requiring multicast increases. With feedback based congestion control, the effectiveness of a traffic control scheme diminishes as propagation delay increases. Especially for a multicast connection, a remote destination may suffer unfair service compared to a local destination due to the delayed feedback. Amelioration of the disadvantages caused by feedback delay is therefore more important for remote destinations in multicast connections. This paper proposes a new switch behavior to provide effective feedback based mathc control for rentoh destinations. The proposed switches adjust the service rate dynamically in accordance woth the state of the downstream, that is, the congestion of the destinaion is immediately controlled by the nearest apstream switch before the source to ramp down the transmission rate of the connection. The proposed switch has an implementation overhead to have a separate buffer for each VC to adjust the service rate in accordance with a backward Rm cell of each VC. The buffer requirement id also increased at intermediate switches. Simulation results show that the proposed switch reduces the cell loss rate in both the local and the remote destinations and slso amelioratd the between the two destinations.

  • PDF

A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Yaghmaee Mohammad Hossein
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.337-352
    • /
    • 2005
  • In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].

A Decentralized Optimal Load Current Sharing Method for Power Line Loss Minimization in MT-HVDC Systems

  • Liu, Yiqi;Song, Wenlong;Li, Ningning;Bai, Linquan;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2315-2326
    • /
    • 2016
  • This paper discusses the elimination of DC voltage deviation and the enhancement of load current sharing accuracy in multi-terminal high voltage direct current (MT-HVDC) systems. In order to minimize the power line losses in different parallel network topologies and to insure the stable operation of systems, a decentralized control method based on a modified droop control is presented in this paper. Averaging the DC output voltage and averaging the output current of two neighboring converters are employed to reduce the congestion of the communication network in a control system, and the decentralized control method is implemented. By minimizing the power loss of the cable, the optimal load current sharing proportion is derived in order to achieve rational current sharing among different converters. The validity of the proposed method using a low bandwidth communication (LBC) network for different topologies is verified. The influence of the parameters of the power cable on the control system stability is analyzed in detail. Finally, transient response simulations and experiments are performed to demonstrate the feasibility of the proposed control strategy for a MT-HVDC system.

A New Active RED Algorithm for Congestion Control in IP Networks (IP 네트워크에서 혼잡제어를 위한 새로운 Active RED 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.437-446
    • /
    • 2002
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF (Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED (Random Early Detection). While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are ineffective in preventing high loss rates. The inherent problem with these queue management algorithms is that they all use static parameter setting. So, in case where these parameters do not match the requirement of the network load, the performance of these algorithms can approach that of a traditional Drop-tail. In this paper, in order to solve this problem, a new active queue management algorithm called ARED (Active RED) is proposed. ARED computes the parameter based on our heuristic method. This algorithm can effectively reduce packet loss while maintaining high link utilizations.

Slective Buffering Macro Handover Which Applies The F-SNOOP in Hierarchical structure (계층 구조에서 F-SNOOP을 적용한 선택적 버퍼링 매크로 핸드오버)

  • Ahn Chi-Hyun;Kim Dong-Hyun;Kim Hyoung-Chul;Ryou Hwang-Bin;Lee Dae-Young;Jun Kye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.413-420
    • /
    • 2006
  • HMIPv6 is designed to reduce the signaling load to external network and improve handover speed of MN by including Mobility Anchor Point(MAP) in local handover. However in this case of macro handover, it's just used pervious MIPv6 handover algorithm. So, it occurs packet loss and transmission delay problem. In this paper, we propose the mechanism applying the HMIPv6 for Fast Handover to choose suitable to the condition buffering handover. The condition for the selection is result distance measurement between MN and CN, between MN and NAR. Furthermore, using F-SNOOP protocol, it is possible to improve wireless network performance. Wireless network has high Bit Error Rate(BER) characteristic because of path loss, fading, noise and interference. TCP regards such errors as congestion and starts congestion control. This congestion control makes packet transmission rate low. However, F-SNOOP improves TCP performance based on SNOOP and Freeze TCP that use Zero Window Advertisement(ZWA) message when handoff occurs in wireless network.

QoS Based Enhanced Collaboration System Using JMF in MDO

  • Kim Jong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.281-284
    • /
    • 2004
  • This paper presents the design and implementation of a QoS based enhanced collaboration system in MDO. This is an efficient distributed communication tool between designers. It supports text communication, audio/video communication, file transfer and XML data sending/receiving. Specially, this system supports a dynamic QoS self-adaptation by using the improved direct adjustment algorithm (DAA+). The original direct adjustment algorithm adjusts the transmission rate according to the congestion level of the network, based on the end to end real time transport protocol (RTP), and controls the transmission rate by using the information of loss ratio in real time transport control protocol (RTCP). But the direct adjustment algorithm does not consider when the RTCP packets are lost. We suggest an improved direct adjustment algorithm to solve this problem. We apply our improved direct adjustment algorithm to our of QoS (Quality of Service) [1] based collaboration system and show the improved performance of transmission rate and loss ratio.

  • PDF

Congestion Control of ABR Traffic in ATM Network (ATM망에서 ABR 트래픽의 폭주제어 방법)

  • Chae, Gi-Jun;Do, In-Sil
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.927-936
    • /
    • 1995
  • ATM Forum has defined a new service class for data applications called Available Bit Rate(ABR) Service, which has highly bursty traffic and unpredictable burst size. It is desirable that we reduce the probability of retrans mission of packets by minimizing the loss of cells because the traffic is much more sensitive to loss than delay. The Forum has also selected the Rate-Based Control for the ABR service and proposed EPRCA as the control mechanism for the service. This paper proposes the combination of EPRCA and the other feedb ack control mechanisms such as BECN and BP. The combined control mechanism control ABR traffic more efficiently and the simulation results show that the network performance can be improved by choosing the appropriate parameters.

  • PDF

An Enhanced Wireless TCP protocol based on Explicit Error Notification (에러 보고를 통한 무선 TCP의 성능 향상)

  • 김경희;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1656-1664
    • /
    • 2001
  • When a packet loss occurs in a communication network operating a TCP protocol, the TCP protocol regards it that the loss has resulted from network congestion. Then the TCP protocol performs congestion control. When it is applied to the wireless network having quite a high BER characteristics, the performance of TCP protocol is degraded very much. In this paper, we propose an Explicit Error Notification(EEN) algorithm to improve the performance of the wireless TCP When a packet loss occurs in the wireless network, the TCP receiver decodes the TCP segment sequence number and the address of the TCP sender and receiver, and then informs the TCP sender of the error in wireless network by sending a NACK. It is to distinguish packets in error from losses of network congestion. In this paper, the performance of the proposed EEN algorithm is analyzed and simulated. In fact, as more errors are corrected, the proposed algorithm shows a larger improvements in performance.

  • PDF

A call admission control in ATM networks using approximation technique for QOS estimation (ATM 망에서의 통화품질 평가를 위한 근사화 기법과 이를 이용한 호 수락 제어)

  • 안동명;한덕찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2184-2196
    • /
    • 1998
  • Admission control is one of the most important congestion control mechanism to be executed at the call set up phase by regulating traffic into a network in a preventive way. An efficient QOS evaluation or bandwidth estimation method is required for call admission to be decided in real time. In this paper, we spropose a computtionally simple approximation method of estimating cell loss probability and mean cell delay for admission control of both delay sensitive and loss sensitive calls. Mixed input queueing system, where a new call combines with the existing traffic, is used as a queueing model for QOS estimation. Also traffic parameters are suggested to characterize both a new call and existing traffic. Aggregate traffic is approximated by a renewal process with these traffic parameters and then mean delay and cell loss probability are detemined using appropriate approximation formulas. The accuracy of this approximation approach is examined by comparing their results with exact analysis or simulation results of vrious mixed unput queueing systems. Based on this QOS estimation method, call admission control scheme which is traffic independent and computable in yeal time are proposed.

  • PDF

SQUIRREL SEARCH PID CONTROLLER ALGORITHM BASED ACTIVE QUEUE MANAGEMENT TECHNIQUE FOR TCP COMMUNICATION NETWORKS

  • Keerthipati.Kumar;R.A. KARTHIKA
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.123-133
    • /
    • 2023
  • Active queue management (AQM) is a leading congestion control system, which can keep smaller queuing delay, less packet loss with better network utilization and throughput by intentionally dropping the packets at the intermediate hubs in TCP/IP (transmission control protocol/Internet protocol) networks. To accelerate the responsiveness of AQM framework, proportional-integral-differential (PID) controllers are utilized. In spite of its simplicity, it can effectively take care of a range of complex problems; however it is a lot complicated to track down optimal PID parameters with conventional procedures. A few new strategies have been grown as of late to adjust the PID controller parameters. Therefore, in this paper, we have developed a Squirrel search based PID controller to dynamically find its controller gain parameters for AQM. The controller gain parameters are decided based on minimizing the integrated-absolute error (IAE) in order to ensure less packet loss, high link utilization and a stable queue length in favor of TCP networks.