영상 보간법은 다양한 영상 처리를 위하여 사용되는 기반 기술로서, 보간 과정에서 발생하는 화질열화를 최소화하기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 손실 정보 추정을 이용하여 개선된 양선형 보간법을 제안한다. 제안하는 방법에서는 획득된 저해상도 영상의 다운 샘플링 및 보간을 통하여 저해상도 영상 생성시 발생하는 손실 정보를 추정하고, 추정한 손실 정보를 고해상도로 보간된 영상에 적용하여 화질 열화를 최소화한다. 동일한 영상을 이용한 실험을 통해서 기존 방법들 보다 0.97~1.79dB의 PSNR이 향상된 것을 알 수 있었고, 윤곽선을 비롯한 주관적 화질 향상을 역시 확인하였다. 제안하는 방법은 영상 해상도 개선과 영상 복원을 위한 다양한 응용 환경에서 유용하게 사용될 수 있다.
영상 해상도 향상 알고리즘은 영상 확대 및 영상 복원을 위한 기반 기술로 사용되며, 해상도 향상 과정에서 문제점은 흐려짐 현상이나 블록 현상으로 인한 화질 열화의 발생이다. 본 논문에서는 하위 레벨 보간을 이용한 손실 정보 추정과 영상 해상도 향상 기법을 제안한다. 제안하는 방법에서는 획득한 저해상도 영상의 다운샘플링-보간 과정을 이용해서 손실 정보를 계산하고, 손실 정보의 보간을 통해서 손실 정보를 추정하며, 가중치 계수와 결합한 추정 손실 정보를 고해상도로 보간 된 영상에 적용한다. 동일한 영상을 이용한 실험 결과, 제안한 방법이 기존의 방법들보다 PSNR에서 평균 2.3dB 이상 향상된 것을 검증하였고, 윤곽선 및 문자의 인식 정도에 대한 주관적인 화질 비교 결과도 개선되었음을 확인하였다. 제안한 방법은 영상 개선을 필요로 하는 다양한 비디오 응용 분야에서 유용하게 사용될 수 있다.
This study proposes an improved binarization method to improve image recognition rate. The research goal is to minimize the information loss that occurs during the binarization process, and to transform the object of the original image that cannot be determined through the transformation process into an image that can be judged. The proposed method uses a stepwise segmentation method of an image and divides blocks using prime numbers. Also, within one block, a trapezoidal type of fuzzy is applied. The fuzzy trapezoid is binarized by dividing the brightness histogram area into three parts according to the degree of membership. As a result of the experiment, information loss was minimized in general images. In addition, it was found that the converted binarized image expressed the object better than the original image in the special image in which the brightness region was tilted to one side.
영상 보간법은 영상의 해상도를 향상시키기 위해서 사용되는 기술로서 보간 결과 영상에서 나타나는 화질 열화가 아직 까지 해결되지 않은 문제점이다. 이를 위해서 본 논문에서는 손실 정보 추정을 이용한 영상 보간법을 제안하고 제안한 알고리즘을 휴대용 장치에서 구현하였다. 제안하는 방법에서는 획득 저해상도 영상을 더욱 작은 크기로 축소한 후 다시 보간을 거쳐서 나온 영상을 이용해서 에러를 계산하고, 그 결과값을 보간하여 추정 손실 정보를 생성한다. 추정된 손실 정보는 적응적 가중치와 경합하여 최종적으로 보간된 고해상도 C영상에 더해지게 된다. 실험을 통해서 제안한 방볍이 기존의 알고리즘틀 보다 PSNR에서 2dB이상 향상된 것을 알 수 있었다. 또한 휴대용 장치에서 구현하여 실시간 처려가 가능한 것을 확인하였다. 이와 같이 제안한 방법은 영상의 확대와 영상 복원을 위한 다양한 응용 환경에서 사용될 수 있다.
Jabbar, Abdul;Li, Xi;Iqbal, M. Munawwar;Malik, Arif Jamal
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권7호
/
pp.2547-2567
/
2021
It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.
본 연구는 야간조명 영상에 대한 정보손실을 최소화하는 이진화 방법을 제안한다. 야간조명 영상의 대상은 조명의 영향으로 초점이 맞지 않으며 식별이 불가능한 영상이다. 또한 영상은 명도 히스토그램에서 일부 영역에만 치우친 명도 영역을 가지고 있다. 그래서 기존의 단순한 이진화 방법은 좋은 결과를 얻기에는 힘들다. 제안한 이진화 방법은 영상을 분할하는 방법과 영상 합병 방법을 사용한다. 단계별로 분할된 블록 내에서는 삼각형 타입의 퍼지논리를 이용하여 두 영역으로 구분한다. 소속도의 값이 0은 현 단계에서 이진화하며 소속도의 값이 1은 다음 단계 이후에 이진화를 한다. 실험 결과는 검은색부분에 밀집된 명도 영역에서 정보손실이 최소화된 야간조명 영상을 취득할 수 있었다.
영상 보간법은 영상의 크기변환에서 할당되지 못한 화소에 대한 값을 추정하는 기술로써, 보간된 결과 영상에서 나타나는 화질 열화 현상을 최소화하면서도 낮은 계산복잡도를 가지는 것이 필요하다. 본 논문에서는 반복적 오차 제거를 이용한 영상 보간법을 제안한다. 제안하는 방법은 5단계로 구성되며, 각각 손실 정보 계산 단계, 손실 정보 추정 단계 손실 정보 적용 단계 오차 계산 단계 오차 적용 단계이다. 실험을 통해서 기존의 방법보다 평균 3.3dB이상 PSNR(peak signal to noise rate)이 향상된 것을 알 수 있었고, 주관적인 화질도 개선된 것을 확인하였으며 계산복잡도가 최소 83% 이상 감소한 것을 측정하였다. 제안한 영상 보간 방법은 영상 복원 및 확대를 위한 다양한 응용 환경에서 유용하게 사용될 수 있다.
영상 해상도 개선은 영상 복원이나 확대 같은 응용 분야에서 널리 사용되는 기술로서, 결과 영상에서의 블록 현상이나 인공물 발생과 같은 화질 열화를 제거하는 것이 중요하다. 본 논문에서는 영상의 손실 정보를 이용하는 영상 해상도 개선 방법을 제안한다. 제안하는 방법은 획득 저해상도를 하위 레벨 보간을 통해서 손실 정보를 계산 및 추정하고 이를 보간된 고해상도 영상에 적용함으로서 1차적인 보간을 수행하고 획득 저해상도 영상과의 에러를 계산한 후 다시 보간된 영상에 적용하는 과정을 반복하여 최종적인 보간 영상을 생성한다. 동일한 영상을 이용한 시험을 통해서 비교 방법들보다 평균 PSNR에서 3.2㏈ 이상 향상된 것을 확인하였고, 주관적 화질도 개선된 것을 알 수 있었다. 또한 계산복잡도를 85% 이상 감소시킬 수 있었다. 제안한 해상도 개선 방법은 영상 처리의 다양한 분야에서 기반 기술로 사용될 수 있다.
When dealing with outdoor images in a variety of computer vision applications, the presence of shadow degrades performance. In order to understand the information occluded by shadow, it is essential to remove the shadow. To solve this problem, in many studies, involves a two-step process of shadow detection and removal. However, the field of shadow detection based on CNN has greatly improved, but the field of shadow removal has been difficult because it needs to be restored after removing the shadow. In this paper, it is assumed that shadow is detected, and shadow-less image is generated by using original image and shadow mask. In previous methods, based on CGAN, the image created by the generator was learned from only the aspect of the image patch in the adversarial learning through the discriminator. In the contrast, we propose a novel method using a discriminator that judges both the whole image and the local patch at the same time. We not only use the residual generator to produce high quality images, but we also use joint loss, which combines reconstruction loss and GAN loss for training stability. To evaluate our approach, we used an ISTD datasets consisting of a single image. The images generated by our approach show sharp and restored detailed information compared to previous methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권1호
/
pp.245-265
/
2022
In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extraction, and the attention mechanism is fused to represent different features, so that the network can fully extract the texture and semantic features of the defect area. The extracted features are then weighted and fused, so as to reduce the loss of information. Next, the weighted fused features are transferred to the Neck network, the semantic features and texture features of different layers are fused by FPN, and the defect target is located more accurately by PAN. In the detection network, the CIOU loss function is used to replace the GIOU loss function to locate the image defect area quickly and accurately, generate the bounding box, and predict the defect category. The results show that compared with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% and 12.87% in detection accuracy respectively. The improved networks can identify the location and category of defects more accurately, and greatly improve the accuracy of defect detection of Thangka images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.